Dynamic actuation properties of two types of high-speed microactuators utilizing Ti-Ni-based thin films were investigated. One type is a microactuator utilizing a Ti-Ni-Pd thin film which has high transformation temperatures. Cooling rate of a microactuator increases with increasing temperature difference between transformation and atmosphere temperatures, thus the increase in transformation temperature is effective to increase the actuation response. The other type is a microactuator using R-phase transformation of a Ti-Ni thin film which has a narrow transformation temperature hysteresis. The narrow transformation temperature hysteresis of the R-phase transformation is effective to increase the actuation response. Both types of actuators are promising for high response applications. The working frequency of the microactuators reached 100Hz in the two types of microactuators utilizing the martensitic transformation of the Ti-Ni-Pd thin film and the R-phase transformation of the Ti-Ni thin film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.