Effects of probiotics on growth, stress tolerance and non-specific immune response in Japanese flounder Paralichthys olivaceus were evaluated in a closed recirculating system. Survival and growth of flounder treated by supplying commercial probiotics either in the diet (the probiotic diet group), or into the rearing water (the water supply group), were higher compared to the untreated group (the control group). Water quality parameters, pH, NH 4 -N, NO 2 -N and PO 4 -P showed lower concentration in the probiotic diet group compared with the control group and the supply group. Plasma lysozyme activity in the probiotic diet group and the water supply group was significantly higher (P < 0.05) than that in the control group. In heat shock stress tests, flounder in the probiotics-treated groups showed greater heat tolerance (measured by 50% lethal time, LT50) than the control group. Pathogen challenge tests with Vibrio anguillarum (2 × 10 7 c.f.u./mL) resulted in significantly higher survival in the probiotics-treated groups than the control group. Results indicated that probiotics supplied in the rearing water and the diet of fish enhanced the stress tolerance and the non-specific immune system of Japanese flounder, providing them a higher resistance against stress conditions and pathogens.
Previous studies in the developing mouse thalamus have demonstrated that regional identity is established during early stages of development (Suzuki-Hirano et al. J. Comp. Neurol. 2011;519:528-543). However, the developing thalamus often shows little resemblance to the anatomical organization of the postnatal thalamus, making it difficult to identify genes that might mediate the organization of thalamic nuclei. We therefore analyzed the expression pattern of genes that we have identified as showing regional expression in embryonic thalamus on postnatal days (P) 6-8 by using in situ hybridization. We also identified several genes expressed only in the postnatal thalamus with restricted expression in specific nuclei. We first demonstrated the selective expression of neurotransmitter-related genes (vGlut2, vGAT, D2R, and HTR2C), identifying the neurotransmitter subtypes of cells in this region, and we also demonstrated selective expression of additional genes in the thalamus (Steel, Slitrk6, and AI852580). In addition, we demonstrated expression of genes specific to somatosensory thalamic nuclei, the ventrobasal posterior nuclei (VP); a visual thalamic nucleus, the dorsal lateral geniculate nucleus (dLGN); and an auditory thalamic nucleus, the medial geniculate body (MGB) (p57Kip, Nr1d1, and GFRα1). We also identified genes that are selectively expressed in multiple different nuclei (Foxp2, Chst2, and EphA8). Finally, we demonstrated that several bone morphogenetic proteins (BMPs) and their inhibitors are expressed in the postnatal thalamus in a nucleus-specific fashion, suggesting that BMPs play roles in the postnatal thalamus unrelated to their known role in developmental patterning. Our findings provide important information for understanding the mechanisms of nuclear specification and connectivity during development, as well as their maintenance in adult thalamus.
During pregnancy, human placenta-associated microRNAs (miRNAs) derived from the miRNA cluster in human chromosome 19 are expressed in villous trophoblasts and secreted into maternal circulation via exosomes; however, little is known about whether circulating placenta-associated miRNAs are transferred into maternal immune cells via exosomes, and modulate expression of target genes in the recipient cells. We employed an in vitro model of trophoblast-immune cell communication using BeWo cells (a human trophoblast cell line) and Jurkat cells (a human leukemic T-cell line) and investigated whether BeWo exosomal placenta-associated miRNAs can suppress expression of target genes in the recipient Jurkat cells. Using this system, we identified PRKG1 as a target gene of placenta-associated miRNA miR-517a-3p. Moreover, we demonstrated that BeWo exosomal miR-517a-3p was internalized into Jurkat cells and subsequently suppressed the expression of PRKG1 in recipient Jurkat cells. Furthermore, using peripheral blood natural killer (NK) cells in vivo, we confirmed that circulating miR-517a-3p was delivered into maternal NK cells as it was into Jurkat cells in vitro. Placenta-associated miR-517a-3p was incorporated into maternal NK cells in the third trimester, and it was rapidly cleared after delivery. Expression levels of miR-517a-3p and its target mRNA PRKG1 were inversely correlated in NK cells before and after delivery. These in vitro and in vivo results suggest that exosome-mediated transfer of placenta-associated miRNAs and subsequent modulation of their target genes occur in maternal NK cells. The present study provides novel insight into our understanding of placenta-maternal communication.
Mutations in the ken and barbie locus are accompanied by the malformation of terminalia in adult Drosophila. Male and female genitalia often remain inside the body, and the same portions of genitalia and analia are missing in a fraction of homozygous flies. Rotated and/or duplicated terminalia are also observed. Terminalia phenotypes are enhanced by mutations in the gap gene tailless, the homeobox gene caudal, and the decapentaplegic gene that encodes a TGFbeta-like morphogen. The ken and barbie gene encodes a protein with three CCHH-type zinc finger motifs that are conserved in several transcription factors such as Krüppel and BCL-6. All defects in ken and barbie mutants are fully rescued by the expression of a wild-type genomic construct, which establishes the causality between phenotypes and the gene.
Although recent studies have demonstrated that microRNAs (miRNAs or miRs) regulate fundamental natural killer (NK) cellular processes, including cytotoxicity and cytokine production, little is known about the miRNA-gene regulatory relationships in maternal peripheral blood NK (pNK) cells during pregnancy. In the present study, to determine the roles of miRNAs within gene regulatory networks of maternal pNK cells, we performed comprehensive miRNA and gene expression profiling of maternal pNK cells using a combination of reverse transcription quantitative PCR (RT-qPCR)-based miRNA array and DNA microarray analyses and analyzed the differential expression levels between first- and third-trimester pNK cells. Furthermore, we constructed regulatory networks for miRNA-mediated gene expression in pNK cells during pregnancy by Ingenuity Pathway Analysis (IPA). PCR-based array analysis revealed that the placenta-derived miRNAs [chromosome 19 miRNA cluster (C19MC) miRNAs] were detected in pNK cells during pregnancy. Twenty-five miRNAs, including six C19MC miRNAs, were significantly upregulated in the third- compared to first-trimester pNK cells. The rapid clearance of C19MC miRNAs also occurred in the pNK cells following delivery. Nine miRNAs, including eight C19MC miRNAs, were significantly downregulated in the post-delivery pNK cells compared to those of the third-trimester. DNA microarray analysis identified 69 NK cell function-related genes that were differentially expressed between the first- and third-trimester pNK cells. On pathway and network analysis, the observed gene expression changes of pNK cells likely contribute to the increase in the cytotoxicity, as well as the cell cycle progression of third- compared to first-trimester pNK cells. Thirteen of the 69 NK cell function-related genes were significantly down-regulated between the first- and third-trimester pNK cells. Nine of the 13 downregulated NK-function-associated genes were in silico target candidates of 12 upregulated miRNAs, including C19MC miRNA miR-512-3p. The results of this study suggest that the transfer of placental C19MC miRNAs into maternal pNK cells occurs during pregnancy. The present study provides new insight into maternal NK cell functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.