Although a loss of healthy pollen grains induced by metabolic heat responses has been indicated to be a major cause of heat-induced spikelet sterility under global climate change, to date detailed information at pollen level has been lacking due to the technical limitations. In this study, we used picolitre pressure-probe-electrospray-ionization mass spectrometry (picoPPESI-MS) to directly determine the metabolites in heat-treated single mature pollen grains in two cultivars, heat-tolerant cultivar, N22 and heat-sensitive cultivar, Koshihikari. Heat-induced spikelet fertility in N22 and Koshihikari was 90.0% and 46.8%, respectively. While no treatment difference in in vitro pollen viability was observed in each cultivar, contrasting varietal differences in phosphatidylinositol (PI)(34:3) have been detected in mature pollen, together with other 106 metabolites. Greater PI content was detected in N22 pollen regardless of the treatment, but not for Koshihikari pollen. In contrast, there was little detection for phosphoinositide in the single mature pollen grains in both cultivars. Our findings indicate that picoPPESI-MS analysis can efficiently identify the metabolites in intact single pollen. Since PI is a precursor of phosphoinositide that induces multiple signaling for pollen germination and tube growth, the active synthesis of PI(34:3) prior to germination may be closely associated with sustaining spikelet fertility even at high temperatures.
The seasonal variation of mortality in Sri Lanka was studied in relation to meteorological variables. Time series data of the total monthly number of deaths in men and women from 1976 to 1980 were analyzed by power spectrum analysis of the fast Fourier transformation method in the areas of Colombo (lowland area, altitude 7 m) and Nuwara-Eliya (highland area, altitude 1890 m), respectively. In the Colombo area, where the mean temperature was always high (mean, 27.5 degrees C), a seasonal variation in mortality of 6 months was validated by power spectrum analysis with peak times in June and November. These mortality peaks corresponded to those of the amounts of rainfall which also showed an identical predominant period of 6 months. In the Nuwara Eliya area, where the mean temperature was always low at about 15-16 degrees C, a seasonal variation of approximately 3 months was found in addition to the 6 months' periodicity. The comparison of the power spectrum pattern of mortality with those of meteorological variables suggested that the amount of rainfall was associated with the seasonal variation of mortality in the Nuwara-Eliya area. In conclusion, the seasonality of mortality in Sri Lanka, a typical tropical zone country, was related to seasonal variation in the amount of rainfall, or a humidity factor, but not to mean temperature.
In humans, emaciation from long-term dietary deficiencies, such as anorexia, reportedly increases physical activity and brain atrophy. However, the effects of single short-term fasting on brain tissue or behavioral activity patterns remain unclear. To clarify the impact of malnutrition on brain function, we conducted a single short-term fasting study as an anorexia model using male adult mice and determined if changes occurred in migratory behavior as an expression of brain function and in brain tissue structure. Sixteen-week-old C57BL/6J male mice were divided into either the fasted group or the control group. Experiments were conducted in a fixed indoor environment. We examined the effects of fasting on the number of nerve cells, structural changes in the myelin and axon density, and brain atrophy. For behavior observation, the amount of food and water consumed, ingestion time, and the pattern of movement were measured using a time-recording system. The fasted mice showed a significant increase in physical activity and their rhythm of movement was disturbed. Since the brain was in an abnormal state after fasting, mice that were normally active during the night became active regardless of day or night and performed strenuous exercise at a high frequency. The brain weight did not change by a fast, and brain atrophy was not observed. Although no textural change was apparent by fasting, the neuronal neogenesis in the subventricular zone and hippocampus was inhibited, causing disorder of the brain function. A clear association between the suppression of encephalic neuropoiesis and overactivity was not established. However, it is interesting that the results of this study suggest that single short-term fasting has an effect on encephalic neuropoiesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.