The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.
A practical rolling resistance simulation method for tires using a static finite element method is presented that fulfills three requirements: (1) easy input data preparation, (2) shorter computation time, and (3) adequate accuracy. The method implements a static deflection analysis first and the stress and strain thus obtained, together with the loss factors of the materials determined separately, are used to estimate the energy dissipation of a rolling tire.
First, the stress and strain profiles of all element groups that have the same cross-sectional coordinates and are located along the circumferential direction are obtained. Second, hysteresis loops are computed by introducing a viscoelastic phase lag between the stress and strain profiles. The sum of the areas of the hysteresis loops is regarded as the dissipation energy density of the element group. The loss factors of the rubber materials are experimentally obtained and the effective loss tangents of the fiber-reinforced rubber are determined by the homogenization theory of dynamic viscoelasticity. The rolling resistance simulation of a passenger radial tire using this approach accurately captures the trends of an actual tire.
The deformation properties and cord tension distribution of a bias tire in contact with the road are analyzed by assuming the tire carcass under inflation pressure to be a toroidal membrane shell of elliptical cross section having a hyperbolic type of orthotropy and the tire tread to be an elastic foundation. Displacement components of a carcass are approximated by an appropriate linear combination of finite terms and are determined by the principle of minimum potential energy. Numerical results for the deformation properties and the cord tension distribution agree well with the corresponding experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.