The aim of this study was to investigate the effect of heating and cooling on time course of voluntary and electrically induced muscle force variation. Material and Methods. Ten volunteers performed 50 maximal voluntary and electrically induced contractions of the knee extensors at an angle of 120 degrees under the control conditions and after passive lower body heating and cooling in the control, heating, and cooling experiments. Peak torque, torque variation, and half-relaxation time were assessed during the exercise. Results. Passive lower body heating increased muscle and core temperatures, while cooling lowered muscle temperature, but did not affect core temperature. We observed significantly lower muscle fatigue during voluntary contraction compared with electrically induced contractions. Body heating (opposite to cooling) increased involuntarily induced muscle force, but caused greater electrically induced muscle fatigue. In the middle of the exercise, the coefficient of correlation for electrically induced muscle torque decreased significantly as compared with the beginning of the exercise, while during maximal voluntary contractions, this relation for torque remained significant until the end of the exercise. Conclusion. It was shown that time course of voluntary contraction was more stable than in electrically induced contractions.
Background: Although the effects of mental fatigue on cognitive–motor function and psychological state in young adults are well-documented, its effects in the elderly are not completely understood. The aim of this study was to estimate the effect of prolonged cognitive load on the indicators of psychological, cognitive, and motor functions.Methods: Fifteen young and 15 elderly men were asked to perform a 2 h “Go/NoGo” task. Psychological state (mood and motivation), cognitive (prefrontal cortex activity and cognitive performance), and motor (motor cortex excitability and grip strength) functions were measured before and after the task. During the 2 h task, both groups had a significantly similar increase in the number of “Incorrect NoGo” errors. Only in young men reaction time (RT) of “Incorrect NoGo” and intraindividual variability of RT of “Incorrect NoGo” significantly increased during task. After the task, handgrip strength decreased for the young men, whereas latency of motor evoked potentials prolonged both groups. Nevertheless, both groups indicated that they felt fatigue after the 2 h task; we observed that mental demand increased, whereas intrinsic motivation and mood decreased only in young men. Prolonged task decreased the switching/rest ratio of oxygenated hemoglobin for the young and the elderly men; however, greater for elderly than young men. Interestingly, the more the prefrontal cortex was activated before the 2 h task during the switching task, the fewer of “Incorrect NoGo” errors made by the young men and the greater the number of errors made by the elderly men.Conclusion: Because of the greater mental load and (possibly) greater activation of prefrontal cortex during the 2 h “Go/NoGo” task, there was greater mental and neuromuscular performance fatigue in young men than in elderly men.
Knee pain prevalence in adolescent basketball players was not related to differences between sides but was higher in tall players. Knee pain was accompanied by morphological abnormalities detected with ultrasound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.