The pandemic caused by SARS-CoV-2 has cost millions of lives and tremendous social/financial loss. The virus continues to evolve and mutate. In particular, the recently emerged “UK”, “South Africa”, and Delta variants show higher infectivity and spreading speed. Thus, the relationship between the mutations of certain amino acids and the spreading speed of the virus is a problem of great importance. In this respect, understanding the mutational mechanism is crucial for surveillance and prediction of future mutations as well as antibody/vaccine development. In this work, we used a coarse-grained model (that was used previously in predicting the importance of mutations of N501) to calculate the free energy change of various types of single-site or combined-site mutations. This was done for the UK, South Africa, and Delta mutants. We investigated the underlying mechanisms of the binding affinity changes for mutations at different spike protein domains of SARS-CoV-2 and provided the energy basis for the resistance of the E484 mutant to the antibody m396. Other potential mutation sites were also predicted. Furthermore, the in silico predictions were assessed by functional experiments. The results establish that the faster spreading of recently observed mutants is strongly correlated with the binding-affinity enhancement between virus and human receptor as well as with the reduction of the binding to the m396 antibody. Significantly, the current approach offers a way to predict new variants and to assess the effectiveness of different antibodies toward such variants.
Protein machines are clusters of protein assemblies that function in order to control the transfer of matter and energy in cells. For a specific protein machine, its working mechanisms are not only determined by the static crystal structures, but also related to the conformational transition dynamics and the corresponding energy profiles. With the rapid development of crystallographic techniques, the spatial scale of resolved structures is reaching up to thousands of residues, and the concomitant conformational changes become more and more complicated, posing a great challenge for computational biology research. Previously, a coarse-grained (CG) model aiming at conformational free energy evaluation was developed and showed excellent ability to reproduce the energy profiles by accurate electrostatic interaction calculations. In this study, we extended the application of the CG model to a series of large-scale protein machine systems. The spike protein trimer of SARS-CoV-2, ATP citrate lyase (ACLY) tetramer, and P4-ATPases systems were carefully studied and discussed as examples. It is indicated that the CG model is effective to depict the energy profiles of the conformational pathway between two endpoint structures, especially for large-scale systems. Both the energy change and energy barrier between endpoint structures provide reasonable mechanism explanations for the associated biological processes, including the opening of receptor binding domain (RBD) of spike protein, the phospholipid transportation of P4-ATPase, and the loop translocation of ACLY. Taken together, the CG model provides a suitable alternative in mechanistic studies related to conformational change in large-scale protein machines.
<abstract> <p>The COVID-19 pandemic has caused a worldwide health crisis and economic recession. Effective prevention and treatment methods are urgently required to control the pandemic. However, the emergence of novel SARS-CoV-2 variants challenges the effectiveness of currently available vaccines and therapeutic antibodies. In this study, through the assessment of binding free energies, we analyzed the mutational effects on the binding affinity of the coronavirus spike protein to neutralizing antibodies, patient-derived antibodies, and artificially designed antibody mimics. We designed a scoring method to assess the immune evasion ability of viral variants. We also evaluated the differences between several targeting sites on the spike protein of antibodies. The results presented herein might prove helpful in the development of more effective therapies in the future.</p> </abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.