BackgroundCryptosporidium spp. and Giardia duodenalis are important gastrointestinal protists in humans and animals worldwide. In China, bovine cryptosporidiosis and giardiasis are of increasing concern because cattle are important reservoirs of these parasites, which have become potential threats to public health and to large numbers of cattle in recent years.ResultsA total of 1366 fecal samples from the Ningxia Autonomous Region were examined. The overall infection rates for Cryptosporidium spp. and G. duodenalis were 1.61% and 2.12%, respectively. Cryptosporidium was only detected in preweaned calves and adults older than 2 years, whereas G. duodenalis was only detected in calves aged less than 11 months. Cryptosporidium spp. were characterized with a PCR–restriction fragment length polymorphism analysis and DNA sequence analysis of the small subunit rRNA gene. Three Cryptosporidium species were identified: C. parvum (n = 15) and C. bovis (n = 4) in preweaned calves, and C. andersoni (n = 4) in adults aged over 2 years. A DNA sequence analysis of the gp60 gene suggested that the 15 C. parvum isolates all belonged to subtype IIdA15G1. Twenty-nine G. duodenalis isolates were analyzed by DNA sequencing of the triosephosphate isomerase (tpi) and glutamate dehydrogenase (gdh) genes. Two G. duodenalis assemblages were identified, assemblages E (n = 15) and B (n = 4, one subtype B1 and three subtype B2) in preweaned calves, and assemblage E (n = 10) in 3–11-month-old calves.ConclusionsThe predominance of C. parvum detected in preweaned calves and the first identified subtype IIdA15G1 in dairy cattle, and the dominant G. duodenalis assemblage E in this study differed considerably from those found in Henan, Heilongjiang, and Shannxi Provinces. Our findings further confirm the dominance of C. parvum IId subtypes in China.
We carry out a detailed investigation of some popular cosmological models in light of the latest observational data, including the Union2.1 supernovae compilation, the baryon acoustic oscillation measurements from the WiggleZ Dark Energy Survey and the cosmic microwave background information from the Wilkinson Microwave Anisotropy Probe seven‐year observations, along with the observational Hubble parameter data. Based on the selection statistics of the models, such as the Akaike and the Bayesian information criteria, we compare different models to assess their worth. We do not assume a flat universe in the fitting. Our results show that the concordance Λ cold dark matter (CDM) model remains the best model to explain the data, while the Dvali–Gabadadze–Porrati model is clearly not favoured by the data. Among these models, the models whose parameters can reduce themselves to the ΛCDM model provide good fits to the data. These results indicate that for the current data, there is no obvious evidence to support the use of any more complex models over the simplest ΛCDM model.
BackgroundOver recent years, several studies have conducted genotyping of Enterocytozoon bieneusi in various hosts worldwide using sequence analysis of the ribosomal internal transcribed spacer (ITS), however, relatively little is known about E. bieneusi in sheep and goats in China. Therefore this research was conducted to understand the prevalence and genotype distribution of E. bieneusi in farmed sheep and goats in China.ResultsA total of 1025 fecal specimens from farmed animals in various geographic areas were collected. Overall, PCR and sequence analysis of the ITS detected E. bieneusi in 34.4 % (353/1025) of isolates; of which the prevalence in goats was 28.8 % (176/611) and in sheep was 42.8 % (177/414). Phylogenetic analysis of ITS sequences identified 42 genotypes (nine known and 33 novel ones). These consisted of four known genotypes (D, KIN-1, EbpC, and F) and 10 novel genotypes (CHG6, CHG7, CHG9, CHG19, CHG23, CHG25, CHS5 and CHS10–CHS12) which all belonged to the so-called zoonotic group 1. A further four known genotypes (CD6, COS-I, BEB6, and J) and 22 novel genotypes (CHG1–CHG3, CHG5, CHG8, CHG10–CHG14, CHG16–CHG18, CHG20, CHG22, CHG24, CHS3, CHS4 and CHS6–CHS9) formed a clade within the group 2. One novel genotype (CHG21) was clustered in the group 9 with the genotype CM4.ConclusionsE. bieneusi is highly prevalent, widely distributed, and genetically diverse in Chinese farmed goats and sheep. Some of the genotypes identified are potentially zoonotic.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1304-0) contains supplementary material, which is available to authorized users.
In the hierarchical theory of galaxy formation, a galaxy overdensity is a hallmark of a massive cosmic structure. However, it is less well understood how different types of galaxies trace the underlying large-scale structure. Motivated by the discovery of a z = 3.13 protocluster, we examine how the same structure is populated by Lyα-emitting galaxies (LAEs). To this end, we have undertaken a deep narrow-band imaging survey sampling Lyα emission at this redshift. Of the 93 LAE candidates within a 36 ′ ×36 ′ (70×70 Mpc 2 ) field, 21 galaxies form a significant surface overdensity (δ Σ,LAE = 3.3 ± 0.9), which is spatially segregated from the Lyman break galaxy (LBG) overdensity. One possible interpretation is that they trace two separate structures of comparable masses (≈ 10 15 M ⊙ ) where the latter is hosted by a halo assembled at an earlier time. We speculate that the dearth of LAEs in the LBG overdensity region may signal the role of halo assembly bias in galaxy formation, which would suggest that different search techniques may be biased accordingly to the formation age or dynamical state of the host halo. The median Lyα-and UV luminosity is 30-70% higher for the protocluster LAEs relative to the field. This difference cannot be explained by the galaxy overdensity alone, and may require a top-heavy mass function, higher star formation efficiency for protocluster halos, or suppression of galaxy formation in low-mass halos. A luminous Lyα blob and an ultramassive galaxy found in this region paint a picture consistent with the expected early growth of galaxies in clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.