Orally administered drugs are subject to a number of barriers impacting bioavailability (F oral ), causing challenges during drug and formulation development. Physiologically-based pharmacokinetic (PBPK) modelling can help during drug and formulation development by providing quantitative predictions through a systems approach. The performance of three overpredictions. Discrepancies between software packages were observed for a few APIs, the largest being 606, 171, and 81.7-fold differences in AFE between SimCYP and GI-Sim, however average performance was relatively consistent across the three software platforms.
A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
Keywords:Physiologically-based pharmacokinetics (PBPK); modelling and simulation (M&S); absorption; oral bioavailability (F oral ); biopharmaceutics; drug database
Abbreviations
Three Physiologically Based Pharmacokinetic software packages (GI-Sim, Simcyp® Simulator, and GastroPlus™) were evaluated as part of the Innovative Medicine Initiative Oral Biopharmaceutics Tools project (OrBiTo) during a blinded "bottom-up" anticipation of human pharmacokinetics. After data analysis of the predicted vs. measured pharmacokinetics parameters, it was found that oral bioavailability (F) was underpredicted for compounds with low permeability, suggesting improper estimates of intestinal surface area, colonic absorption and/or lack of intestinal transporter information. F was also underpredicted for acidic compounds, suggesting overestimation of impact of ionisation on permeation, lack of information on intestinal transporters, or underestimation of solubilisation of weak acids due to less than optimal intestinal model pH settings or underestimation of bile micelle contribution. F was overpredicted for weak bases, suggesting inadequate models for precipitation or lack of in vitro precipitation information to build informed models. Relative bioavailability was underpredicted for both high logP compounds as well as poorly water-soluble compounds, suggesting inadequate models for solubility/dissolution, underperforming bile enhancement models and/or lack of biorelevant solubility measurements. These results indicate areas for improvement in model software, modelling approaches, and generation of applicable input data. However, caution is required when interpreting the impact of drug-specific properties in this exercise, as the availability of input parameters was heterogeneous and highly variable, and the modellers generally used the data "as is" in this blinded bottom-up prediction approach.
The purpose of this study was to develop a physiologically based pharmacokinetic (PBPK) model predicting the pharmacokinetics (PK) of different compounds in pregnant subjects. This model considers the differences in tissue sizes, blood flow rates, enzyme expression levels, glomerular filtration rates, plasma protein binding, and other factors affected during pregnancy in both the maternal and fetal models. The PBPKPlus™ module in GastroPlus® was used to model the PK of cefuroxime and cefazolin. For both compounds, the model was first validated against PK data in healthy non-pregnant volunteers and then applied to predict pregnant groups PK. The model accurately described the PK in both non-pregnant and pregnant groups and explained well differences in the plasma concentration due to pregnancy. The fetal plasma and amniotic fluid concentrations were also predicted reasonably well at different stages of pregnancy. This work describes the use of a PBPK approach for drug development and demonstrates the ability to predict differences in PK in pregnant subjects and fetal exposure for compounds excreted renally. The prediction for pregnant groups is also improved when the model is calibrated with postpartum or non-pregnant female group if such data are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.