At present, the mean value of the meshing stiffness and the gear backlash is a fixed value in the nonlinear dynamic model. In this study, wear is considered in the model of the gear backlash and time-varying stiffness. With the increase of the operating time, the meshing stiffness decreases and the gear backlash increases. A six degrees-of-freedom nonlinear dynamic model of a new rigid-flexible gear pair is established with time-varying stiffness and time-varying gear backlash. The dynamic behaviors of the gear transmission system are studied through bifurcation diagrams with the operating time as control parameters. Then, the dynamic characteristics of the gear transmission system are analyzed using excitation frequency as control parameters at four operating time points. The bifurcation diagrams, Poincaré maps, fast Fourier transform (FFT) spectra, phase diagrams, and time series are used to investigate the state of motion. The results can provide a reference for the gear transmission system with wear.
Abstract-In this paper, we introduce an efficient algorithm to analyze metamaterials (MTM), which can be finite periodic structures with tight coupling between nearby cells. Firstly, the algorithm, based on method of moments (MoM), uses hybrid volume-surface integral equation (VSIE) to analyze composite dielectric-conductor objects, then, the characteristic basis function method (CBFM) and precorrected-fast Fourier transform (p-FFT) algorithm are combined to accelerate the calculation of equations, based on which, metamaterials composed of connected periodic cells can be analyzed efficiently.
A dynamical analysis of a Mathieu-van der Pol-Duffing nonlinear system with fractional-order derivative under combined parametric and forcing excitation is studied in this paper. The approximate analytical solution is researched for 1/2 sub harmonic resonance coupled with primary parametric resonance based on the improved averaging approach. The steady-state periodic solution including its stability condition is established. The equivalent linear stiffness coefficient (ELDC) and equivalent linear damping coefficient (ELSC) for this nonlinear fractional-order oscillator are defined. Then, the numerical simulations are presented in three typical cases by iterative algorithms. The time history, phase portrait, FFT spectrum and Poincare maps are shown to explain the system response. Some different responses, such as quasi-periodic, multi-periodic and single periodic behaviors are observed and investigated. The results of comparisons between the numerical solutions and the approximate analytical solutions in three typical cases show the correctness of the analytical solutions. The influences of the fractional-order parameters on the system dynamical response are researched based on the ELDC and ELSC. Through analysis, it could be found that the increase of the fractional-order coefficient would result in the rightward and downward movements of the amplitude-frequency curves. The increase of the fractional-order coefficient will also move the bifurcation point rightwards and will make the existing range of steady-state solution larger. It could also be found that the ELSC will become larger and ELDC smaller when the fractional order is closer to zero, so that the decrease of the fractional order would make the response amplitude larger. At last, the detailed conclusions are summarized, which is beneficial to design and control this kind of fractional-order nonlinear system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.