Medical image quality is highly relative to clinical diagnosis and treatment, leading to a popular research topic of medical image denoising. Image denoising based on deep learning methods has attracted considerable attention owing to its excellent ability of automatic feature extraction. Most existing methods for medical image denoising adapted to certain types of noise have difficulties in handling spatially varying noise; meanwhile, image detail losses and structure changes occurred in the denoised image. Considering image context perception and structure preserving, this paper firstly introduces a medical image denoising method based on conditional generative adversarial network (CGAN) for various unknown noises. In the proposed architecture, noise image with the corresponding gradient image is merged as network conditional information, which enhances the contrast between the original signal and noise according to the structural specificity. A novel generator with residual dense blocks makes full use of the relationship among convolutional layers to explore image context. Furthermore, the reconstruction loss and WGAN loss are combined as the objective loss function to ensure the consistency of denoised image and real image. A series of experiments for medical image denoising are conducted with the denoising results of
PSNR
=
33.2642
and
SSIM
=
0.9206
on JSRT datasets and
PSNR
=
35.1086
and
SSIM
=
0.9328
on LIDC datasets. Compared with the state-of-the-art methods, the superior performance of the proposed method is outstanding.
Multimodal medical images are useful for observing tissue structure clearly in clinical practice. To integrate multimodal information, multimodal registration is significant. The entropy-based registration applies a structure descriptor set to replace the original multimodal image and compute similarity to express the correlation of images. The accuracy and converging rate of the registration depend on this set. We propose a new method, logarithmic fuzzy entropy function, to compute the descriptor set. It is obvious that the proposed method can increase the upper bound value from log(r) to log(r) + ∆(r) so that a more representative structural descriptor set is formed. The experiment results show that our method has faster converging rate and wider quantified range in multimodal medical images registration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.