In this Letter, new concepts of fluorescence phase-change materials and fluorescence phase-change multilevel recording are proposed. High-contrast fluorescence between the amorphous and crystalline states is achieved in nickel-or bismuth-doped Ge 2 Sb 2 Te 5 phase-change memory thin films. Opposite phase-selective fluorescence effects are observed when different doping ions are used. The fluorescence intensity is sensitive to the crystallization degree of the films. This characteristic can be applied in reconfigurable multi-state memory and other logic devices. It also has likely applications in display and data visualization.
<p>The netted wireless sensor nodes or coherent accumulation processing in multistatic radar imaging requires high accuracy time synchronization. Although GNSS timing can also be used as a time synchronization method to serve the applications above, its timing accuracy will be limited. In this context, we present the hardware implementation for Two-Way Time-Frequency Real-Time Synchronization (TWTFRTS) with an automatic adaptive jitter elimination algorithm based on Kalman and PID, which is implemented in a real-time, low-cost, portable Xilinx ZYNQ device. A short (2 km) baseline TWTFRTS experiment was done with a pair of devices composed of a master device and a slave device. The result shows a high precision of time synchronization performance with the standard deviation (1 σ) better than 1 ns.</p>
<p> </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.