Dietary intake of lycopene was associated with reduced risk of lethal prostate cancer and with a lesser degree of angiogenesis in the tumor. Because angiogenesis is a strong progression factor, an endpoint of lethal prostate cancer may be more relevant than an endpoint of indolent prostate cancer for lycopene in the era of highly prevalent prostate-specific antigen screening.
Although tobacco use has been recognized as one of the leading causes of cancer morbidity and mortality, a role of smoking in the occurrence of prostate cancer has not been established. However, evidence indicates that factors that influence the incidence of prostate cancer may differ from those that influence progression and fatality from the disease. Thus, we reviewed and summarized results from prospective cohort studies that assessed the relation between smoking and fatal prostate cancer risk, as well as epidemiological and clinical studies that focused on aggressive behavior in prostate cancer, such as poorer survival, advanced stage, or poorer differentiation at diagnosis. The majority of the prospective cohort studies showed that current smoking is associated with a moderate increase of ~30% in fatal prostate cancer risk compared to never/non-smokers. This association is likely to be an underestimate of the effect of smoking because most studies had a single assessment of smoking at baseline and long follow-up times, and the association was considerably stronger in some sub-groups of heaviest smokers, or when smoking was assessed in a relatively short period (within 10 years) prior to cancer mortality. Using aggressive behavior of prostate cancer as outcome, current smoking was associated with significantly elevated risk, ranging from around twofold to threefold or higher. Although alternative explanations, such as publication bias, residual confounding, screening bias, and the influence of smoking-related comorbidities cannot be ruled out entirely, these findings suggest that smoking is associated with aggressive behavior of prostate cancers or with a sub-group of rapidly progressing prostate cancer. Based on evidence presented in this review, cigarette smoking is likely to be a risk factor for prostate cancer progression and should be considered as a relevant exposure in prostate cancer research and prevention of mortality from this cancer.
The up-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is prevalent in many cancers. This phenomenon makes PI3K and Akt fruitful targets for cancer therapy and/or prevention because they are mediators of cell survival signaling. Although the suppression of phospho-Akt by selenium has been reported previously, little information is available on whether selenium modulates primarily the PI3K-phosphoinositidedependent kinase 1 (PDK1) side of Akt phosphorylation or the phosphatase side of Akt dephosphorylation. The present study was aimed at addressing these questions in PC-3 prostate cancer cells which are phosphatase and tensin homologue-null. Our results showed that selenium decreased Akt phosphorylation at Thr308 (by PDK1) and Ser473 (by an unidentified kinase); the Thr308 site was more sensitive to selenium inhibition than the Ser473 site. The protein levels of PI3K and phospho-PDK1 were not affected by selenium. However, the activity of PI3K was reduced by 30% in selenium-treated cells, thus discouraging the recruitment of PDK1 and Akt to the membrane due to low phosphatidylinositol-3,4,5-trisphosphate formation by PI3K. Consistent with the above interpretation, the membrane localization of PDK1 and Akt was significantly diminished as shown by Western blotting. In the presence of a calcium chelator or a specific inhibitor of calcineurin (a calcium-dependent phosphatase), the suppressive effect of selenium on phospho-Akt(Ser473) was greatly reduced. The finding suggests that seleniummediated dephosphorylation of Akt via calcineurin is likely to be an additional mechanism in regulating the status of phospho-Akt. [Mol Cancer Ther 2006;5(2):246 -52]
The US Environmental Protection Agency (EPA) recently concluded that there is likely to be a causal relationship between short-term (< 30 days) ozone exposure and cardiovascular (CV) effects; however, biological mechanisms to link transient effects with chronic cardiovascular disease (CVD) have not been established. Some studies assessed changes in circulating levels of biomarkers associated with inflammation, oxidative stress, coagulation, vasoreactivity, lipidology, and glucose metabolism after ozone exposure to elucidate a biological mechanism. We conducted a weight-of-evidence (WoE) analysis to determine if there is evidence supporting an association between changes in these biomarkers and short-term ozone exposure that would indicate a biological mechanism for CVD below the ozone National Ambient Air Quality Standard (NAAQS) of 75 parts per billion (ppb). Epidemiology findings were mixed for all biomarker categories, with only a few studies reporting statistically significant changes and with no consistency in the direction of the reported effects. Controlled human exposure studies of 2 to 5 hours conducted at ozone concentrations above 75 ppb reported small elevations in biomarkers for inflammation and oxidative stress that were of uncertain clinical relevance. Experimental animal studies reported more consistent results among certain biomarkers, although these were also conducted at ozone exposures well above 75 ppb and provided limited information on ozone exposure-response relationships. Overall, the current WoE does not provide a convincing case for a causal relationship between short-term ozone exposure below the NAAQS and adverse changes in levels of biomarkers within and across categories, but, because of study limitations, they cannot not provide definitive evidence of a lack of causation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.