from automobile exhausts, in powering the deep space probes, as well as managing spot-size distributed cooling of electronic devices and household appliances. [3] To date, TE conversion is mainly driven by the development of higher performing, practically stable, and environmentally friendly TE materials. The major scientific and technological challenge is to compete successfully with the established energy conversion technologies and broaden the range of industrial applications of thermoelectricity. The efficiency of a TE material is gauged by its dimensionless figure of merit ZT, defined as ZT = α 2 σT/(κ L +κ e), where α, σ, κ L , κ e , and T are the Seebeck coefficient, electrical conductivity, lattice thermal conductivity, electronic thermal conductivity, and the absolute temperature, respectively. [1] Among various classes of TE materials, mixed ionic-electronic conductors, such as Cu
Wearable thermoelectric generators (w-TEGs) convert thermal energy into electrical energy to realize self-powering of intelligent electronic devices, thus reducing the burden of battery replacement and charging, and improving the usage time and efficiency of electronic devices. Through finite element simulation, this study successfully designed high-performance thermoelectric generator and made it into wearable thermoelectric module by adopting “rigid device—flexible connection” method. It was found that higher convective heat transfer coefficient (h) on cold-end leads to larger effective temperature difference (ΔTeff) and better power generation performance of device in typical wearable scenario. Meanwhile, at same h on the cold-end, longer TE leg length leads to larger ΔTeff established at both ends of device, larger device output power (Pout) and open-circuit voltage (Uoc). However, when the h increases to a certain level, optimization effect of increasing TE leg length on device power generation performance will gradually diminish. For devices with fixed temperature difference between two ends, longer TE leg length leads to higher resistance of TEGs, resulting in lower device Pout but slight increase in Uoc. Finally, sixteen 16 × 4 × 2 mm2 TEGs (L = 1.38 mm, W = 0.6 mm) and two modules were fabricated and tested. At hot end temperature Th = 33 °C and cold end temperature Tc = 30 °C, the actual maximum Pout of the TEG was about 0.2 mW, and the actual maximum Pout of the TEG module was about 1.602 mW, which is highly consistent with the simulated value. This work brings great convenience to research and development of wearable thermoelectric modules and provides new, environmentally friendly and efficient power solution for wearable devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.