To verify the influence of frost protection windmachine with continuous oscillation on microclimate, the experimental study was conducted in a tea field in Zhenjiang, China on a typical radiation frost night. Disturbed airflow variation and protection effect were investigated. Airflow velocity of 8 points at different distance from the machine was measured during an oscillation period with an anemometer, and temperature variation of 48 points at different distance from the machine and different height above the ground was measured with temperature recorders. The changes of airflow velocity and temperature were analyzed. Where the velocity was high, the airflow-disturbed duration was as well as large. Airflow velocity at each point presented a trend of rise, fluctuation, and decline under the action of windmachine with continuous oscillation. The temperature rise with the same distance from the machine was close, among which the 10 m and 20 m away from the machine increased greatly. Disturbed airflow enlarged the temperature difference between the top and the bottom of the canopy. The windmachine with continuous oscillation is proved to be effective for tea frost protection and provides more coverage than traditional anti-frost fan with flabellate oscillation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.