Increasing numbers of people are participating in the sport of rock climbing, and its growth is expected to continue with the sport's Olympic debut in 2020. Extreme loading of the upper extremities, contorted positioning of the lower extremities, rockfall, and falling from height create an elevated and diverse injury potential that is affected by experience level and quantity of participation. Injuries vary from acute traumatic injuries to chronic overuse injuries. Unique sport-specific injuries to the flexor tendon pulley system exist, but the remaining musculoskeletal system is not exempt from injury. Orthopaedic evaluation and surgery is frequently required. Understanding the sport of rock climbing and its injury patterns, treatments, and prevention is necessary to diagnose, manage, and counsel the rock-climbing athlete.
The diagnosis of fracture nonunion following plate osteosynthesis is subjective and frequently ambiguous. Initially following osteosynthesis, loads applied to the bone are primarily transmitted through the plate. However, as callus stiffness increases, the callus is able to bear load proportional to its stiffness while forces through the plate decrease. The purpose of this study was to use a “smart” fracture plate to distinguish between phases of fracture healing by measuring forces transmitted through the plate. A wireless force sensor and small adapter were placed on the outside of a distal femoral locking plate. The adapter converts the slight bending of the plate under axial load into a transverse force which is measurable by the sensor. An osteotomy was created and then plated in the distal femur of biomechanical Sawbones. Specimens were loaded to simulate single‐leg stance first with the osteotomy defect empty (acute healing), then sequentially filled with silicone (early callus) and then polymethyl methacrylate (hard callus). There was a strong correlation between applied axial load and force measured by the “smart” plate. Data demonstrate statistically significant differences between each phase of healing with as little as 150 N of axial load applied to the femur. Forces measured in the plate were significantly different between acute (100%), early callus (66.4%), and hard callus (29.5%). This study demonstrates the potential of a “smart” fracture plate to distinguish between phases of healing. These objective data may enable early diagnosis of nonunion and enhance outcomes for patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.