The emergence of antibiotic resistance in bacteria has caused many healthcare problems and social burdens. In this study, a type of self-assembled peptide amphiphiles (PA) functionalized with a heparin-binding Cardin-motif peptide (sequence (AKKARK)) has been designed to combat bacterial drug resistance. Above the critical micelle concentration (CMC) at 45 μM, these amphiphilic Cardin antimicrobial peptide (ACA-PA) can self-assemble into cylindrical supramolecular structures (7-10 nm in diameter) via hydrophobic interactions and β-sheet secondary conformation. The ACA-PA displays excellent antibacterial properties against both Gram-positive and Gram-negative bacteria. This work also demonstrates the effects of molecular self-assembly on antibacterial activity of peptide amphiphiles. The ACA-PA exhibits antibacterial activity on Gram-positive bacteria in a dose-dependent manner, but in the case of Gram-negative bacteria, the antibacterial potency of ACA-PA is remarkably enhanced at concentrations above the CMC. The ACA-PA has been shown to cause bacterial cytoplasmic leakage, causing localized membrane disruption in Gram-positive bacteria and blisters on disorganized membranes of Gram-negative bacteria. Therefore, these peptide-based nanoparticles have promising potential as antimicrobial agents without resorting to the use of antibiotics, and, thus, should be further studied for a wide range of biomaterial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.