The emergence of antibiotic resistance in bacteria has caused many healthcare problems and social burdens. In this study, a type of self-assembled peptide amphiphiles (PA) functionalized with a heparin-binding Cardin-motif peptide (sequence (AKKARK)) has been designed to combat bacterial drug resistance. Above the critical micelle concentration (CMC) at 45 μM, these amphiphilic Cardin antimicrobial peptide (ACA-PA) can self-assemble into cylindrical supramolecular structures (7-10 nm in diameter) via hydrophobic interactions and β-sheet secondary conformation. The ACA-PA displays excellent antibacterial properties against both Gram-positive and Gram-negative bacteria. This work also demonstrates the effects of molecular self-assembly on antibacterial activity of peptide amphiphiles. The ACA-PA exhibits antibacterial activity on Gram-positive bacteria in a dose-dependent manner, but in the case of Gram-negative bacteria, the antibacterial potency of ACA-PA is remarkably enhanced at concentrations above the CMC. The ACA-PA has been shown to cause bacterial cytoplasmic leakage, causing localized membrane disruption in Gram-positive bacteria and blisters on disorganized membranes of Gram-negative bacteria. Therefore, these peptide-based nanoparticles have promising potential as antimicrobial agents without resorting to the use of antibiotics, and, thus, should be further studied for a wide range of biomaterial applications.
Background and purposeA coronary stent is a well-known cardiovascular medical device implanted to resolve disorders of the circulatory system due to bloodstream narrowing. Since the implanted device interacts with surrounding biological environments, the surface properties of a typical implantable stent play a critical role in its success or failure. Endothelial cell adhesion and proliferation are fundamental criteria needed for the success of a medical device. Metallic coronary stents are commonly used as biomaterial platforms in cardiovascular implants. As a new generation of coronary stents, bioresorbable vascular scaffolds have attracted a great deal of attention among researchers and studies on bioresorbable materials (such as magnesium and zinc) remain a target for further optimization. However, additional surface modification is needed to control the biodegradation of the implant material while promoting biological reactions without the use of drug elution.MethodsHerein, precise temperature and thickness controlled atomic layer deposition (ALD) was utilized to provide a unique and conformal nanoscale TiO2 coating on a customized magnesium-zinc stent alloy.ResultsImpressively, results indicated that this TiO2 nano-thin film coating stimulated coronary arterial endothelial cell adhesion and proliferation with additional features acting as a protective barrier. Data revealed that both surface morphology and surface hydrophilicity contributed to the success of the ALD nanoscale coating, which further acted as a protection layer inhibiting the release of harmful degradation products from the magnesium-zinc stent.ConclusionOverall, the outcome of this in vitro study provided a promising ALD stent coating with unique nano-structural surface properties for increased endothelialization, and as a result, ALD should be further studied for numerous biomedical applications.
Curcumin is a natural phenolic compound extracted from the plant Curcuma longa L. In previous studies, curcumin has been shown to have anticancer, antioxidant, and anti-inflammatory effects. In this study, the cytotoxicity of different concentrations (5, 10, 25, 50, 75, and 100 μM) of curcumin dissolved in dimethyl sulfoxide was compared between MG-63 osteosarcoma and healthy human osteoblast cells. Consequently, the viability of osteosarcoma cells was less than 50% at a concentration of 10 μM compared to the control sample without curcumin, but healthy osteoblast cells had at least 80% viability throughout all the concentrations tested. The results demonstrated that MG-63 osteosarcoma cells were much more sensitive in terms of cytotoxicity to curcumin, while the healthy human osteoblasts exhibited a higher healthy viability after 24 hours of curcumin treatment. Therefore, this study showed that at the right concentrations (5 μM to 25 μM), curcumin, along with a proper nanoparticle drug delivery carrier, may selectively kill bone cancer cells over healthy bone cells.
Thermoresponsive targeting is used to deliver therapeutic agents at hyperthermic conditions (39-45 °C). However, available thermoresponsive drug delivery systems (TDDS), including liposomes, have a complex method of preparation involving toxic solvents and reagents. The objective of this in vitro study was to prepare and characterize thermoresponsive lipid nanoparticles (TLN) for treating glioblastoma, the most aggressive brain tumor whose treatment is limited by a low blood brain barrier (BBB) permeability of drugs. Thermoresponsive lipids were prepared by mixing liquid and solid fatty acids (0.1 : 1 to 2 : 1 ratio) and lipid mixtures exhibiting a solid-liquid phase transition at 39 °C were identified by plotting melting point against liquid contents. TLN were prepared by a hot melt encapsulation method using mono- or double-surfactant systems. TLN showed desirable size (<270 nm), zeta potential (-35 to -50 mV), spherical morphology and stability by FTIR studies. In the drug release studies, paclitaxel release was slow at 37 °C, however, it was released abruptly at 39 °C due to the faster diffusion rate from liquid state nanoparticles. During cytotoxicity studies, the unloaded TLN were non-toxic whereas paclitaxel loaded TLN showed higher cytotoxicity to glioblastoma cells at 39 °C (69% cell viability after one hour) compared to 37 °C (82% cell viability). The TLN showed higher permeability across an in vitro model of BBB at 39 °C due to a deformable liquid state which can squeeze through the tight junctions of the BBB. In conclusion, this study demonstrated that the TLN can be used as a safe and effective alternative to traditional TDDS with higher potential to target glioblastoma cells across the BBB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.