Electrochemical reduction of carbon dioxide (CO 2 ) was performed on zinc-deposited copper (Cu/Zn) electrodes, and the faradaic efficiency of this system toward methane, ethane, and hydrogen was evaluated. Hierarchically structured Zn was electrodeposited on a Cu substrate under constant voltage in a varying bath concentration of Zn to yield low-and high-concentration deposits, represented as Cu/Zn-A and Cu/Zn-B, respectively. The prepared materials were characterized by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The reduction of CO 2 was performed with the Cu/Zn electrodes in an H-type cell, and the results obtained were compared with those from bare Cu and Zn electrodes, revealing that a high deposit of Zn on Cu (Cu/Zn-B) shows greater conversion efficiency than does a low Zn deposit (Cu/Zn-A) and the maximum faradaic efficiency of methane follows the order Cu/Zn-B (52%) > Cu (23%) > Zn (7%). Moreover, the efficiency of hydrogen formation is suppressed on Cu/Zn-B (8%) compared to bare Cu (68%) in the potential range studied. The results suggest that depositing Zn on Cu favors a protonation reaction, which results in higher C 1 product formation on a Cu/Zn-B electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.