A simple hydrothermal approach was used to successfully produce nanostructured Zinc vanadate (Zn3V2O8), which was calcined at 450 ℃. The structural, optical and surface morphological features of calcined Zn3V2O8 nanoparticles were investigated using a variety of analytical techniques. The produced Zn3V2O8 nanoparticles had an orthorhombic crystalline structure, with an average crystallite size of 35.14 nm, according to the X-ray diffraction pattern (XRD). Transmission electron microscopy (TEM) analysis evaluated the spherical shaped Zn3V2O8 nanoparticles. The calcined catalyst was characterized by Fourier Transform-Infrared spectroscopy (FT-IR) analysis to analyse bonding interactions between the metal fragments within the composites. The nanoparticles obtained from hydrothermal synthesis were of size 37.2 nm, and the zeta-potential of nanoparticles was found to be −25.4 mV, indicating excellent dispersion and stability. The spectrophotometer was used to analyse the UV-Vis diffuse reflectance spectra (DRS). Cyclic voltammetry and electrochemical impedance spectroscopy were used to study the electrochemical behavior of Zn3V2O8 nanostructures. The specific capacitance value of the synthesized nanoparticles was 248.5 Fg−1. The active composite material was exploited as an electrode for the Supercapacitor application, and it revealed that synthesized Zn3V2O8 nanoparticles might lead to a possible application for future energy storage technologies.
HIGHLIGHTS
Zinc vanadate nanostructures have been prepared using easy and economical hydrothermal technique and are explored for supercapacitor application
Electrochemical behaviour of zinc vanadate nanostructures were investigated by cyclic voltammetry, electrochemical impedance spectroscopic analysis and galvano static charge discharge analysis
This zinc vanadate nanostructures exhibited a maximum specific capacitance of 248.5 F g−1 in the HCl electrolyte
It clearly revealed that synthesized nanoparticles may lead to potential application for forthcoming energy storage devices
GRAPHICAL ABSTRACT
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.