Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. This version -May 6, 2013 Terms of use: Documents in AbstractThe daily average price of electricity represents the price of electricity to be delivered over the full next day and serves as a key reference price in the electricity market. It is an aggregate that equals the average of hourly prices for delivery during each of the 24 individual hours. This paper demonstrates that the disaggregated hourly prices contain useful predictive information for the daily average price. Multivariate models for the full panel of hourly prices signicantly outperform univariate models of the daily average price, with reductions in Root Mean Squared Error of up to 16%. Substantial care is required in order to achieve these forecast improvements. Rich multivariate models are needed to exploit the relations between dierent hourly prices, but the risk of overtting must be mitigated by using dimension reduction techniques, shrinkage and forecast combinations.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. This version -May 6, 2013 Terms of use: Documents in AbstractThe daily average price of electricity represents the price of electricity to be delivered over the full next day and serves as a key reference price in the electricity market. It is an aggregate that equals the average of hourly prices for delivery during each of the 24 individual hours. This paper demonstrates that the disaggregated hourly prices contain useful predictive information for the daily average price. Multivariate models for the full panel of hourly prices signicantly outperform univariate models of the daily average price, with reductions in Root Mean Squared Error of up to 16%. Substantial care is required in order to achieve these forecast improvements. Rich multivariate models are needed to exploit the relations between dierent hourly prices, but the risk of overtting must be mitigated by using dimension reduction techniques, shrinkage and forecast combinations.
Empirical modeling of the yield curve is often inconsistent with absence of arbitrage. In fact, many parsimonious models, like the popular Nelson-Siegel model, are inconsistent with absence of arbitrage. In other cases, arbitrage-free models are often used in inconsistent ways by recalibrating parameters that are assumed constant. For these cases, this paper introduces an arbitrage smoothing device to control arbitrage errors that arise in fitting a sequence of yield curves. The device is applied to the US term structure for the family of Nelson-Siegel curves. It is shown that the arbitrage smoothing device contributes to parameter stability and smoothness.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in AbstractWe assess the effect of aggregate stock market illiquidity on U.S. Treasury bond risk premia. We find that the stock market illiquidity variable adds to the well established Cochrane-Piazzesi and Ludvigson-Ng factors. It explains 10%, 9%, 7%, and 7% of the one-year-ahead variation in the excess return for two-, three-, four-, and five-year bonds respectively and increases the adjusted R 2 by 3-6% across all maturities over Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009) factors. The effects are highly statistically and economically significant both in and out of sample. We find that our result is robust to and is not driven by information from open interest in the futures market, long-run inflation expectations, dispersion in beliefs, and funding liquidity. We argue that stock market illiquidity is a timely variable that is related to "flight-to-quality" episodes and might contain information about expected future business conditions through funding liquidity and investment channels.
Real-time macroeconomic data are typically incomplete for today and the immediate past ('ragged edge') and subject to revision. To enable more timely forecasts the recent missing data have to imputed. In the context of the U.S. leading index we assess four alternative models, paying explicit attention to publication lags and data revisions. We conclude that the univariate imputation method in levels adopted byThe Conference Board can be improved upon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.