The workability of various types of operations offshore are largely affected by waves and wave induced motions. Examples are crew transfer from crew transfer vessels or service operation vessels to offshore wind turbines for maintenance, landing of helicopters in (navy) vessels and various crane operations. Over the recent years quite some effort has been put in technology aiming to provide a real time on-board prediction of approaching waves and wave induced vessel motions some minutes in advance. Enabling crew to anticipate, thus enhancing the safety and operability of these operations. This paper addresses the performance during a field test of the system as being under development by Next Ocean enabling such predictions, based on using an off-the-shelve (non-coherent) navigation radar system as a remote wave observer. Briefly summarizing (earlier publications on) the technical approach, focus will be on results obtained from a field test where the system was validated. Good agreements between ship motions as measured by an on-board motion reference unit and predictions obtained by the wave and motion prediction system during a field test on the North Sea near the Dutch coast on a 42 m patrol vessel will be shown in the results section, from which the usefulness of the system for operational decision support can be concluded.
Spectroscopic-imaging scanning tunneling microscopy is a powerful technique to study quantum materials, with the ability to provide information about the local electronic structure with subatomic resolution. However, as most spectroscopic measurements are conducted without feedback to the tip, it is extremely sensitive to vibrations coming from the environment. This requires the use of laboratories with low-vibration facilities combined with a very rigid microscope construction. In this article, we report on the design and fabrication of an ultra-stable STM for spectroscopicimaging measurements that operates in ultra high vacuum and at low temperatures (4 K). We perform finite element analysis calculations for the main components of the microscope in order to guide design choices towards higher stiffness and we choose sapphire as the main material of the STM head. By combining these two strategies, we construct a STM head with measured lowest resonant frequencies above f 0 = 13 kHz for the coarse approach mechanism, a value three times higher than previously reported, and in good agreement with the calculations. With this, we achieve an average vibration level of ∼ 6 fm/ √ Hz, without a dedicated low-vibration lab. We demonstrate the microscope's performance with topographic and spectroscopic measurements on the correlated metal Sr 2 RhO 4 , showing the quasiparticle interference pattern in real and reciprocal space with high signal-to-noise ratio. a) allan@physics.leidenuniv.nl 1 arXiv:1810.09727v1 [physics.app-ph]
A reduction of the interprobe distance in multiprobe and double-tip scanning tunneling microscopy to the nanometer scale has been a longstanding and technically difficult challenge. Recent multiprobe systems have allowed for significant progress by achieving distances of ~30 nm using two individually driven, traditional metal wire tips. For situations where simple alignment and fixed separation can be advantageous, we present the fabrication of on-chip double-tip devices that incorporate two mechanically fixed gold tips with a tip separation of only 35 nm. We utilize the excellent mechanical, insulating and dielectric properties of high-quality SiN as a base material to realize easy-to-implement, lithographically defined and mechanically stable tips. With their large contact pads and adjustable footprint, these novel tips can be easily integrated with most existing commercial combined STM/AFM systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.