As artificial intelligence develops, deep learning algorithms are increasingly being used in the field of dorsal hand vein (DHV) recognition. However, deep learning has high requirements regarding the number of samples, and current DHV datasets have few images. To solve the above problems, we propose a method based on the fusion of ResNet and Histograms of Oriented Gradients (HOG) features, in which the shallow semantic information extracted by primary convolution and HOG features are fed into the residual structure of ResNet for full fusion and, finally, classification. By adding Gaussian noise, the North China University of Technology dataset, the Shandong University of Science and Technology dataset, and the Eastern Mediterranean University dataset are extended and fused to from a fused dataset. Our proposed method is applied to the above datasets, and the experimental results show that our proposed method achieves good recognition rates on each of the datasets. Importantly, we achieved a 93.47% recognition rate on the fused dataset, which was 2.31% and 26.08% higher than using ResNet and HOG alone.
In the context of COVID-19, the research on various aspects of the venipuncture robot field has become increasingly hot, but there has been little research on robotic needle insertion angles, primarily performed at a rough angle. This will increase the rate of puncture failure. Furthermore, there is sometimes significant pain due to the patients’ differences. This paper investigates the optimal needle entry angle decision for a dorsal hand intravenous injection robot. The dorsal plane of the hand was obtained by a linear structured light scan, which was used as a basis for calculating the needle entry angle. Simulation experiments were also designed to determine the optimal needle entry angle. Firstly, the linear structured optical system was calibrated and optimized, and the error function was constructed and solved iteratively by the optimization method to eliminate measurement error. Besides, the dorsal hand was scanned to obtain the spatial point clouds of the needle entry area, and the least squares method was used to fit it to obtain the dorsal hand plane. Then, the needle entry angle was calculated based on the needle entry area plane. Finally, the changes in the penetration force under different needle entry angles were analyzed to determine the optimal needle insertion angle. According to the experimental results, the average error of the optimized structured light plane position was about 0.1 mm, which meets the needs of the project, and a large angle should be properly selected for needle insertion during the intravenous injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.