Background:The pathways of DNA dehydroxymethylation and demethylation are yet to be better defined. Results: De novo DNMTs could serve as redox state-dependent DNA dehydroxymethylases. Conclusion: DNA dehydroxymethylation by DNMTs provides a simpler pathway to reduce DNA hydroxymethylation and methylation. Significance: That de novo DNMTs also function as DNA dehydroxymethylases raises intriguing new questions regarding their structures and regulatory roles.
Vertebrate DNA methyltransferases (DNMTs) have been thought to primarily function to covalently add a methyl group to the 5-position of cytosine. However, recent discovery of the DNA demethylation and dehydroxymethylation activities of DNMTs in vitro suggest new routes to complete the dynamic cycle of DNA methylation-demethylation of the vertebrate genomes. The in vitro reaction conditions suggest that vertebrate DNMTs can switch from DNA methylases to DNA dehydroxymethylases under oxidative stress and to DNA demethylases in the presence of calcium ion under nonreducing conditions. These environmental parameters provide clues regarding the choices in vivo of DNMT activities utilized in different physiological systems. In particular, the nature of these parameters suggest that the DNA demethylation and dehydroxymethylation activities of the vertebrate DNMTs play essential roles in multiple biological processes including early embryo development, regulation of neuronal plasticity, tumorigenesis and hormone-regulated transcription.
Erythroid Krüppel-like factor (EKLF/KLF1) was identified initially as a critical erythroid-specific transcription factor and was later found to be also expressed in other types of hematopoietic cells, including megakaryocytes and several progenitors. In this study, we have examined the regulatory effects of EKLF on hematopoiesis by comparative analysis of E14.5 fetal livers from wild-type and Eklf gene knockout (KO) mouse embryos. Depletion of EKLF expression greatly changes the populations of different types of hematopoietic cells, including, unexpectedly, the long-term hematopoietic stem cells Flk2− CD34− Lin− Sca1+ c-Kit+ (LSK)-HSC. In an interesting correlation, Eklf is expressed at a relatively high level in multipotent progenitor (MPP). Furthermore, EKLF appears to repress the expression of the colony-stimulating factor 2 receptor β subunit (CSF2RB). As a result, Flk2− CD34− LSK-HSC gains increased differentiation capability upon depletion of EKLF, as demonstrated by the methylcellulose colony formation assay and by serial transplantation experiments in vivo. Together, these data demonstrate the regulation of hematopoiesis in vertebrates by EKLF through its negative regulatory effects on the differentiation of the hematopoietic stem and progenitor cells, including Flk2− CD34− LSK-HSCs.
DNA methylation at C of CpG dyads (mCpG) in vertebrate genomes is essential for gene regulation, genome stability and development. We show in this study that proper functioning of post-replicative DNA mismatch repair (MMR) in mammalian cells relies on the presence of genomic mCpG, as well as on the maintenance DNA methyltransferase Dnmt1 independently of its catalytic activity. More importantly, high efficiency of mammalian MMR surveillance is achieved through a hemi-mCpG-Np95(Uhrf1)-Dnmt1 axis, in which the MMR surveillance complex(es) is recruited to post-replicative DNA by Dnmt1, requiring its interactions with MutSα, as well as with Np95 bound at the hemi-methylated CpG sites. Thus, efficiency of MMR surveillance over the mammalian genome in vivo is enhanced at the epigenetic level. This synergy endows vertebrate CpG methylation with a new biological significance and, consequently, an additional mechanism for the maintenance of vertebrate genome stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.