Failure modes and effects analysis (FMEA) is a safety and reliability technique that is widely used to evaluate, design, and process a system against diverse possible ways through which the potential failure has a tendency to occur. In conventional FMEA, the risk evaluation is determined by risk priority number (RPN) obtained by multiplying of three risk factors—severity, occurrence, and detection. However, because of many shortages in conventional FMEA, the RPN scores have been widely criticized along issues bothering on ambiguity and vagueness, scoring, appraising, evaluating, and selecting corrective actions. In this paper, we propose a new integrated fuzzy smart FMEA framework where the combination of fuzzy set theory, analytical hierarchy process (AHP), and data envelopment analysis (DEA) is used, respectively, to handle uncertainty and to increase the reliability of the risk assessment. These are achieved by employing a heterogeneous group of experts and determining the efficiency of FMEA mode with adequate priority and corrective actions using RPN, time, and cost as indicators. A numerical example (aircraft landing system) is provided to exemplify the feasibility and effectiveness of the proposed model. The outputs of the proposed model compared with the conventional risk assessment technique results show its effectiveness, reliability, and propensity for real applications.
Healthcare tends to be one of the most complicated sectors, and hospitals exist at the core of healthcare activities. One of the most significant elements in hospitals is service quality level. Moreover, the dependency between factors, dynamic features, as well as objective and subjective uncertainties involved endure challenges to modern decision-making problems. Thus, in this paper, a decision-making approach is developed for hospital service quality assessment, using a Bayesian copula network based on a fuzzy rough set within neighborhood operators as a basis of that to deal with dynamic features as well as objective uncertainties. In the copula Bayesian network model, the Bayesian Network is utilized to illustrate the interrelationships between different factors graphically, while Copula is engaged in obtaining the joint probability distribution. Fuzzy rough set theory within neighborhood operators is employed for the subjective treatment of evidence from decision makers. The efficiency and practicality of the designed method are validated by an analysis of real hospital service quality in Iran. A novel framework for ranking a group of alternatives with consideration of different criteria is proposed by the combination of the Copula Bayesian Network and the extended fuzzy rough set technique. The subjective uncertainty of decision makers’ opinions is dealt with in a novel extension of fuzzy Rough set theory. The results highlighted that the proposed method has merits in reducing uncertainty and assessing the dependency between factors of complicated decision-making problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.