Large numbers of bacteria coexist in the oral cavity. Streptococcus sanguinis, one of the major bacteria in dental plaque, produces hydrogen peroxide (H 2 O 2 ), which interferes with the growth of other bacteria. Streptococcus mutans, a cariogenic bacterium, can coexist with S. sanguinis in dental plaque, but to do so, it needs a means of detoxifying the H 2 O 2 produced by S. sanguinis. In this study, we investigated the association of three oxidative stress factors, Dpr, superoxide dismutase (SOD), and AhpCF, with the resistance of S. sanguinis to H 2 O 2 . The knockout of dpr and sod significantly increased susceptibility to H 2 O 2 , while the knockout of ahpCF had no apparent effect on susceptibility. In particular, dpr inactivation resulted in hypersensitivity to H 2 O 2 . Next, we sought to identify the factor(s) involved in the regulation of these oxidative stress genes and found that PerR negatively regulated dpr expression. The knockout of perR caused increased dpr expression levels, resulting in low-level susceptibility to H 2 O 2 compared with the wild type. Furthermore, we evaluated the roles of perR, dpr, and sod when S. mutans was cocultured with S. sanguinis. Culturing of the dpr or sod mutant with S. sanguinis showed a significant decrease in the S. mutans population ratio compared with the wild type, while the perR mutant increased the ratio. Our results suggest that dpr and sod in S. mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H 2 O 2 in regulating the expression of Dpr.
Inhalation studies are the gold standard for the estimation of the harmful effects of respirable chemical substances, while there is limited evidence of the harmful effects of chemical substances by intratracheal instillation. We reviewed the effectiveness of intratracheal instillation studies for estimating the hazards of nanoparticles, mainly using papers in which both inhalation and intratracheal instillation studies were performed using the same nanoparticles. Compared to inhalation studies, there is a tendency in intratracheal instillation studies that pulmonary inflammation lasted longer in the lungs. A difference in pulmonary inflammation between high and low toxicity nanoparticles was observed in the intratracheal instillation studies, as in the inhalation studies. Among the endpoints of pulmonary toxicity, the kinetics of neutrophil counts, percentage of neutrophils, and chemokines for neutrophils and macrophages, heme oxygenase-1 (HO-1) in bronchoalveolar lavage fluid (BALF), reflected pulmonary inflammation, suggesting that these markers may be considered the predictive markers of pulmonary toxicity in both types of study. When comparing pulmonary inflammation between intratracheal instillation and inhalation studies under the same initial lung burden, there is a tendency that the inflammatory response following the intratracheal instillation of nanoparticles is greater than or equal to that following the inhalation of nanoparticles. If the difference in clearance in both studies is not large, the estimations of pulmonary toxicity are close. We suggest that intratracheal instillation studies can be useful for ranking the hazard of nanoparticles through pulmonary inflammation.
Because viscosity of gel moisturizers increases as weight decreases, selecting gel moisturizers with a minimal change in weight and viscosity would be preferable in the case of a long-time application and severe dry mouth.
Endothelin-1 (ET-1) is well known as the most potent vasoconstrictor, and can evoke histamineindependent pruritus. Recently, its involvement in cutaneous inflammation has begun to draw attention. The upregulation of ET-1 expression in the epidermis of human psoriasis patients has been reported. It was also demonstrated that ET-1 can stimulate dendritic cells to induce Th17/1 immune responses. However, the role of the interaction between ET-1 and ET-1 receptors in the pathogenesis of psoriasis remains elusive. Here, we investigated the effects of ET-1 receptor antagonist on imiquimod (IMQ)-induced psoriasiform dermatitis in mouse. Psoriasis-related cytokines such as IL-17A and TNF-α induced ET-1 expression in human keratinocytes. Topical application of selective endothelin A receptor (ETAR) antagonist ambrisentan significantly attenuated the development of IMQ-induced psoriasiform dermatitis and also significantly inhibited the histological inflammation and cytokine expression (TNF-α, IL-12p40, IL-12 p19, and IL-17) in the lesional skin of the mouse model. Furthermore, topical application of ambrisentan suppressed phenotypic and functional activation of dendritic cells in lymph nodes. Our findings indicate that the ET-1 and ETAR axis plays an important role in the pathogenesis of psoriasis and is a potential therapeutic target for treating psoriasis.
Atopic dermatitis (AD) is an eczematous skin disorder characterized by type 2 inflammation, barrier disruption, and intense itch. In addition to type 2 cytokines, many other cytokines, such as interferon gamma (IFN-γ), interleukin 17 (IL-17), and interleukin 22 (IL-22), play roles in the pathogenesis of AD. It has been reported that the extracellular signal-regulated kinase (ERK) is downstream of such cytokines. However, the involvement of the ERK pathway in the pathogenesis of AD has not yet been investigated. We examined the expression of p-ERK in mouse and human AD skin. We also investigated the effects of the topical application of an ERK inhibitor on the dermatitis score, transepidermal water loss (TEWL), histological change, and expression of filaggrin, using an AD-like NC/Nga murine model. The effects of an ERK inhibitor on filaggrin expression in normal human epidermal keratinocytes (NHEKs) and on chemokine production from bone marrow-derived dendritic cells (BMDCs) were also evaluated. p-ERK was highly expressed in mouse and human AD skin. Topical application of an ERK inhibitor alleviated the clinical symptoms, histological changes, TEWL, and decrease in expression of filaggrin in the AD-like NC/Nga murine model. The ERK inhibitor also restored the IL-4 induced reduction in the expression of filaggrin in NHEK, and inhibited chemokine production from BMDC induced by IL-4. These results indicate that the ERK pathway is involved in the pathogenesis of AD, and suggest that the ERK pathway has potential as a therapeutic target for AD in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.