The performance of the convolutional neural network exceeded that of orthopedic surgeons in detecting intertrochanteric hip fractures from proximal femoral radiographs under limited conditions. The convolutional neural network has a significant potential to be a useful tool for screening for fractures on plain radiographs, especially in the emergency room, where orthopedic surgeons are not readily available.
Old age, osteopenia, preoperative comorbidities, and severe global sagittal imbalance were found to be frequent in patients with proximal junctional fracture. In addition, marked correction of sagittal malalignment might be considered as a risk factor of upper instrumented vertebra collapse followed by adjacent vertebral subluxation, which occurred in the first 6 months after corrective surgery with the potential for causing severe neurologic deficit because of the severe local kyphotic deformity.
Purpose To elucidate the normative values of whole body sagittal alignment and balance of a healthy population in the standing position; and to clarify the relationship among the alignment, balance, health-related quality of life (HRQOL), and age. Methods Healthy Japanese adult volunteers [n = 126, mean age 39.4 years (20-69), M/F = 30/96] with no history of spinal disease were enrolled in a cross-sectional cohort study. The Oswestry Disability Index (ODI) questionnaire was administered and subjects were scanned from the center of the acoustic meati (CAM) to the feet while standing on a force plate to determine the gravity line (GL), and the distance between CAM and GL (CAM-GL) was measured in the sagittal plane. Standard X-ray parameters were measured from the head to the lower extremities. ODI was compared among age groups stratified by decade. Correlations were investigated by simple linear regression analysis. Ideal lumbar lordosis was investigated using the least squares method. Results The present study yielded normative values for whole standing sagittal alignment including head and lower extremities in a cohort of 126 healthy adult volunteers, comparable to previous reports and thus a formula for ideal lumbar lordosis was deduced: LL = 32.9 ? 0.60 9 PI -0.23 9 age. There was a tendency of positive correlation between McGregor slope, thoracic kyphosis, PT, and age. SVA, T1 pelvic angle, sacrofemoral angle, knee flexion angle, and ankle flexion angle, but not CAM-GL, increased with age, suggesting that the spinopelvic alignment changes with age, but standing whole body alignment is compensated for to preserve a horizontal gaze. ODI tended to increase from the 40s in the domain of pain intensity, personal care, traveling, and total score. ODI weakly, but significantly positively correlated with age and PI-LL. Conclusion Whole body standing alignment even in healthy subjects gradually deteriorates with age, but is compensated to preserve a horizontal gaze. HRQOL is also affected by aging and spinopelvic malalignment.
Human beings stand upright with the chain of balance beginning at the feet, progressing to the lower limbs (ankles, knees, hip joints, pelvis), each of the spinal segments, and then ending at the cranium to achieve horizontal gaze and balance using minimum muscle activity. The details of the alignment and balance of the chain, however, are not clearly understood, due to the lack of information regarding the three‐dimensional (3D) orientation of all bony elements in relation to the gravity line (GL). We performed a clinical study to clarify the standing sagittal alignment of whole axial skeletons in reference to the GL using the EOS slot‐scanning 3D X‐ray imaging system with simultaneous force plate measurement in a healthy human population. The GL was defined as a vertical line drawn through the centre of vertical pressure measured by the force plate. The present study yielded a complete set of physiological alignment measurements of the standing axial skeleton from the database of 136 healthy subjects (a mean age of 39.7 years, 20–69 years; men: 40, women: 96). The mean offset of centre of the acoustic meati from the GL was 0.0 cm. The offset of the cervical and thoracic vertebrae was posterior to the GL with the apex of thoracic kyphosis at T7, 5.0 cm posterior to the GL. The sagittal alignment changed to lordosis at the level of L2. The apex of the lumbar lordosis was L4, 0.6 cm anterior to the GL, and the centre of the base of the sacrum (CBS) was just posterior to the GL. The hip axis (HA) was 1.4 cm anterior to the GL. The knee joint was 2.4 cm posterior and the ankle joint was 4.8 cm posterior to the GL. L4‐, L5‐ and the CBS‐offset in subjects in the age decades of 40s, 50s and 60s were significantly posterior to those of subjects in their 20s. The L5‐ and CBS‐offset in subjects in their 50s and 60s were also significantly posterior to those in subjects in their 30s. HA was never posterior to the GL. In the global alignment, there was a positive correlation between offset of C7 vertebra from the sagittal vertical axis (a vertical line drawn through the posterior superior corner of the sacrum in the sagittal plane) and age, but no correlation was detected between the centre of the acoustic meati‐GL offset and age. Cervical lordosis (CL), pelvic tilt (PT), pelvic incidence, hip extension, knee flexion and ankle dorsiflexion increased significantly with age. Our results revealed that aging induces trunk stooping, but the global alignment is compensated for by an increase in the CL, PT and knee flexion, with the main function of CL and PT to maintain a horizontal gaze in a healthy population.
Reinforcement of pedicle screws using PMMA augmentation may be a feasible surgical technique for osteoporotic spines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.