A new approach to β-Ga2O3 single crystal growth was studied, using the vertical Bridgman (VB) method in ambient air, while measuring the β-Ga2O3 melting temperature and investigating the effects of crucible composition and shape. β-Ga2O3 single crystals 25 mm in diameter were grown in platinum-rhodium alloy crucibles in ambient air, with no adhesion of the crystals to the crucible wall.Single crystal growth without a crystal seed was realized by (100) faceted growth with a growth direction perpendicular to the (100) faceted plane.
The characteristics of structural defects observed on (100) wafers in β-Ga2O3 single crystals grown by directional solidification in a vertical Bridgman furnace were studied in terms of crystal growth conditions. No high-dislocation-density regions near the wafer periphery were observed owing to the lack of adhesion between the as-grown crystal ingot surface and the crucible inner wall, and directional solidification growth in a crucible with a very low temperature gradient resulted in β-Ga2O3 single crystals with a low mean dislocation density of 2.3 × 103 cm−2. Line-shaped defects up to 150 µm long in the [010] direction were detected at a mean density of 0.5 × 102 cm−2, which decreased with decreasing growth rate. The line-shaped defect structure and formation mechanism were discussed.
Cation-deficient perovskites exhibit complex local atomic arrangements which cannot be adequately described by average crystal structure models. By combining reciprocal-space electron diffraction analysis and direct observations of atom positions using state-of-the-art scanning transmission electron microscopy, we clarify the nature of the cation ordering within A-site-deficient perovskite single crystals of La (1Àx)/3 Li x NbO 3 (x ¼ 0 and x ¼ 0.04). Both materials are found to have complex modulated crystal structures with two types of A-cation ordering, namely a long-range layer ordering in alternate (001) p planes and a short-range (intra-domain) columnar ordering within La-rich (001) p layers. The columnar ordering (occupational modulation) produces modulated displacements of Nb and O atoms. It is also found that substitution of even a small amount of Li for La can affect significantly the columnar ordering, leading to a series of structural and microstructural changes that are likely to have a deleterious effect on the Li-ion conductivity of this material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.