SUMMARY Hydraulic fracturing plays a vital role in the development of unconventional energy resources, such as shale gas/oil and enhanced geothermal systems to increase the permeability of tight rocks. In this study, we conducted hydraulic fracturing experiments in a laboratory using carbonate-rich outcrop samples of Eagle Ford shale from the United States. We used a thermosetting acrylic resin containing a fluorescent compound as a fracturing fluid. Immediately after fracturing, the liquid resin penetrated in the fractured blocks was hardened by applying heat. Then, the crack was viewed under UV irradiation, where the fluorescent resin allowed the induced fracture to be clearly observed, indicating the formation of simple, thin bi-wing planar fractures. We observed the detailed structure of the fractures from microscopy of thin cross-sections, and found that their complexity and width varied with the distance from the wellbore. This likely reflects the change in the stress state around the tip of the growing fracture. The interaction between fractures and constituent grains/other inclusions (e.g. organic substances) seemed to increase the complexity of the fractures, which may contribute to the efficient production of shale gas/oil via hydraulic fracturing. We first detected acoustic emission (AE) signals several seconds before the peak fluid pressure was observed, and the active region gradually migrated along the microscopically observed fracture with increasing magnitude. Immediately after the peak pressure was observed, the fluid pressure dropped suddenly (breakdown) with large seismic waves that were probably radiated by dynamic propagation of the fracture; thereafter, the AE activity stopped. We applied moment tensor inversion for the obtained AE events by carefully correcting the AE sensor characteristics. Almost all of the solutions corresponded to tensile events that had a crack plane along the maximum compression axis, as would be expected based on the conventional theory of hydraulic fracturing. Such domination of tensile events has not been reported in previous studies based on laboratory/in situ experiments, where shear events were often dominant. The extreme domination of the tensile events in the present study is possibly a result of the use of rock samples without any significant pre-existing cracks. Our experiments revealed the fracturing behaviour and accompanying seismic activities of very tight rocks in detail, which will be helpful to our understanding of fracturing behaviour in shale gas/oil resource production.
Summary To investigate the influence of fluid viscosity on the fracturing process, we conducted hydraulic fracturing experiments on Kurokami-jima granite specimens with resins of various viscosities. We monitored the acoustic emission (AE) activity during fracturing and estimated the moment tensor (MT) solutions for 54 727 AE events using a deep learning technique. We observed the breakdown at 14–22 MPa of borehole pressure, which was dependent on the viscosity, as well as two preparatory phases accompanying the expansion of AE-active regions. The first expansion phase typically began at 10–30 per cent of the breakdown pressure, where AEs occurred three-dimensionally surrounding the wellbore and their active region expanded with time towards the external boundaries of the specimen. The MT solutions of these AEs corresponded to crack-opening (tensile) events in various orientations. The second expansion phase began at 90–99 per cent of the breakdown pressure. During this phase, a new planar AE distribution emerged from the borehole and expanded along the maximum compression axis, and the focal mechanisms of these AEs corresponded to the tensile events on the AE-delineating plane. We interpreted that the first phase was induced by fluid penetration into pre-existing microcracks, such as grain boundaries, and the second phase corresponded to the main fracture formation. Significant dependences on fluid viscosity were observed in the borehole pressure at the time of main fracture initiation and in the speed of the fracture propagation in the second phase. The AE activity observed in the present study was fairly complex compared to that observed in previous experiments conducted on tight shale samples. This difference indicates the importance of the interaction between the fracturing fluid and pre-existing microcracks in the fracturing process.
Summary The hydraulic fracturing technique is used for resource production, such as in shale gas/oil extraction and enhanced geothermal systems. The effects of fracturing are often monitored via induced earthquakes, and obtaining as much information as possible from those earthquakes is desirable. The stress drop—calculated from the seismic moment MO and corner frequency fC—is an earthquake-related parameter that can help identify additional characteristics of the seismicity. To investigate the relationship between stress drops and hydraulically induced seismic events, we estimated the MO and fC of acoustic emission (AE) events during hydraulic fracturing experiments performed in the laboratory in previous studies using 2 Eagle Ford shale and 10 Kurokami-jima granite samples. We estimated MO by fitting the theoretical spectra to the observed spectra after correcting for the following effects: (1) frequency response of AE transducers under the installation method used in the fracturing experiment, including differences in sensitivity across every transducer used in each experiment; and (2) the difference in radiation pattern coefficients, which depends on the focal mechanisms of each AE event. This analysis used 46 857 focal mechanisms obtained from moment tensor solutions estimated using a deep learning technique. The range of the resultant MO was found to be 2.8 × 10–5 ≤ MO ≤ 4.5 × 10–1 [Nm], corresponding to − 9.1 ≤ MW ≤ −6.3, where MW is the moment magnitude. We also estimated fC using the multiple-empirical Green's function method, reducing the influence of modelling errors in the AE sensor response and transfer function of the medium. Out of the 1053 events whose MO and fC were estimated, 465 events (44.2 per cent)—regardless of their focal mechanisms—were found to have MO and fC values consistent with the constant stress drop scaling of shear failure (i.e. shear failures have 0.1–100 MPa stress drops independent of their magnitude) that has been repeatedly confirmed in many previous studies. The remaining events showed lower fC values than those expected from the scaling law. This indicates that high pore pressure in a source region induced by fluid stimulation contributes to the occurrence of low-frequency earthquakes. Overall, we demonstrated that source parameter estimation was possible for laboratory AEs induced by hydraulic fracturing, which can improve our understanding of the characteristics of fluid-induced earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.