The structural features required for xyloglucan oligosaccharides to inhibit 2,4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments have been investigated. A nonasaccharide (XG9) containing one fucosyl-galactosyl side chain and an undecasaccharide (XG11) containing two fucosyl-galactosyl side chains were purified from endo-beta-1,4-glucanase-treated xyloglucan, which had been isolated from soluble extracellular polysaccharides of suspension-cultured sycamore (Acerpseudoplatanus) cells and tested in the pea stem bioassay. A novel octasaccharide (XG8') was prepared by treatment of XG9 with a xyloglucan oligosaccharide-specific alpha-xylosidase from pea seedlings. XG8' was characterized and tested for its ability to inhibit auxin-induced growth. All three oligosaccharides, at a concentration of 0.1 microgram per milliliter, inhibited 2,4-dichlorophenoxyacetic acid-stimulated growth of pea stem segments. XG11 inhibited the growth to a greater extent than did XG9. Chemically synthesized nona- and pentasaccharides (XG9, XG5) inhibited 2,4-dichlorophenoxyacetic acid-stimulated elongation of pea stems to the same extent as the same oligosaccharides isolated from xyloglucan. A chemically synthesized structurally related heptasaccharide that lacked a fucosyl-galactosyl side chain did not, unlike the identical heptasaccharide isolated from xyloglucan, significantly inhibit 2,4-dichlorophenoxyacetic acid-stimulated growth.
Near-infrared fluorescent protein (iRFP) is a bright and stable fluorescent protein with near-infrared excitation and emission maxima. Unlike the other conventional fluorescent proteins, iRFP requires biliverdin (BV) as a chromophore. Here, we report that phycocyanobilin (PCB) functions as a brighter chromophore for iRFP than BV, and biosynthesis of PCB allows live-cell imaging with iRFP in the fission yeast Schizosaccharomyces pombe. We initially found that fission yeast cells did not produce BV, and therefore did not show any iRFP fluorescence. The brightness of iRFP-PCB was higher than that of iRFP-BV in vitro and in fission yeast. We introduced SynPCB, a PCB biosynthesis system, into fission yeast, resulting in the brightest iRFP fluorescence. To make iRFP readily available in fission yeast, we developed an endogenous gene tagging system with iRFP and all-in-one integration plasmids carrying the iRFP-fused marker proteins together with SynPCB. These tools not only enable the easy use of the multiplexed live-cell imaging in fission yeast with a broader color palette, but also open the door to new opportunities for near-infrared fluorescence imaging in a wider range of living organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.