It was previously revealed that esculeoside A, a new glycoalkaloid, and esculeogenin A, a new aglycon of esculeoside A, contained in ripe tomato ameliorate atherosclerosis in apoE-deficent mice. This study examined whether tomatidine, the aglycone of tomatine, which is a major tomato glycoalkaloid, also shows similar inhibitory effects on cholesterol ester (CE) accumulation in human monocyte-derived macrophages (HMDM) and atherogenesis in apoE-deficient mice. Tomatidine significantly inhibited the CE accumulation induced by acetylated LDL in HMDM in a dose-dependent manner. Tomatidine also inhibited CE formation in Chinese hamster ovary cells overexpressing acyl-CoA:cholesterol acyl-transferase (ACAT)-1 or ACAT-2, suggesting that tomatidine suppresses both ACAT-1 and ACAT-2 activities. Furthermore, the oral administration of tomatidine to apoE-deficient mice significantly reduced levels of serum cholesterol, LDL-cholesterol, and areas of atherosclerotic lesions. The study provides the first evidence that tomatidine significantly suppresses the activity of ACAT and leads to reduction of atherogenesis.
Because foam cell formation in macrophages is believed to play an essential role in the progression of early atherosclerotic lesions in vivo, prevention of foam cell formation is considered to be one of the major targets for the treatment of atherosclerosis. The present study examined the inhibitory effect of 50 crude plant extracts on foam cell formation. Among those crude extracts, Zizyphi Fructus (ZF) and Zizyphi Semen (ZS) extracts significantly inhibited the foam cell formation induced by acetylated LDL. Furthermore, triterpenoids such as oleanonic acid, pomolic acid, and pomonic acid were the major active compounds, and triterpenoids containing a carboxylic acid at C-28 play an important role in the inhibitory effect on foam cell formation in human macrophages. These data suggest that triterpenoids in Zizyphus jujuba , the plant source of ZF and ZS, may therefore be useful for the prevention of atherosclerosis.
Because advanced glycation end product (AGE) inhibitors such as pyridoxamine significantly inhibit the development of retinopathy and neuropathy in the streptozotocin-induced diabetic rat, treatment with AGE inhibitors is believed to be a potential strategy for the prevention of lifestyle-related diseases such as diabetic complications. A crude extract of Astragali Radix (AR; roots of Astragalus membranaceus ) inhibits the formation of N(epsilon)-(carboxymethyl)lysine (CML) and pentosidine during the incubation of bovine serum albumin with ribose. In the present study, compounds were isolated from AR that prevented CML and pentosidine formation. Astragalosides significantly inhibited the formation of both CML and pentosidine, and astragaloside V had the strongest inhibitory effect among all if the isolated compounds. These data suggest that AR and astragalosides may be a potentially useful strategy for the prevention of clinical diabetic complications by inhibiting AGEs.
Polyclonal and monoclonal antibodies have been widely applied to demonstrate the presence of advanced glycation end products (AGEs) in vivo. However, our previous study showed that monoclonal anti-AGE antibody (6D12) and polyclonal anti-N epsilon-(carboxymethyl)lysine (CML) antibody recognize not only CML but also N epsilon-(carboxyethyl)lysine (CEL), thus indicating that we should pay attention to the specificity of the antibodies. As a result, we prepared specific monoclonal antibodies against CML, CEL, N omega-(carboxymethyl)arginine (CMA), and S-(carboxymethyl)cysteine (CMC). Our immunochemical study using anti-CMA antibody demonstrated that the CMA content increased in a time-dependent manner when collagen was incubated with glucose, indicating that immunological quantification using the specific antibody is especially useful for measuring an acid-labile AGE structure, such as CMA. Monoclonal antibody is also applied to identify a novel biological marker in pathological lesions. We prepared antibody libraries against proteins modified with aldehydes, such as glyoxal, methylglyoxal, and glycolaldehyde (GA), and one antibody, GA5, which specifically reacts with the GA-modified protein that is recognized in human atherosclerotic lesions. Following successive high-performance liquid chromatography purification, the GA5-reactive compound was isolated and its chemical structure was found to be 3-hydroxy-4-hydroxymethyl-1-(5-amino-5-carboxypentyl) pyridinium cation, which was named GA-pyridine. Taken together, these results demonstrate that a specific antibody is a powerful tool for analyzing novel biomarkers, formation pathways, and the efficacy of AGE inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.