A temperature-sensitive, elongation-deficient mutant of Arabidopsis thaliana was isolated. At the non-permissive temperature of 31 degrees C, the mutation impaired tissue elongation; otherwise, tissue development was normal. Hypocotyl cells that had established cell walls at 21 degrees C under light-dark cycles ceased elongation and swelled when the mutant was shifted to 31 degrees C and darkness, indicating that the affected gene is essential for cell elongation. Analysis of the cell walls of mutant plants grown at 31 degrees C revealed that the cellulose content was reduced to 40% and the pectin content was increased to 162% of the corresponding values for the wild type grown at the same temperature. The increased amounts of pectin in the mutant were bound tightly to cellulose microfibrils. No change in the content of hemicellulose was apparent in the 31 degrees C-adapted mutant. Field emission-scanning electron microscopy suggested that the structure of cellulose bundles was affected by the mutation; X-ray diffraction, however, revealed no change in the crystallite size of cellulose microfibrils. The regeneration of cellulose microfibrils from naked mutant protoplasts was substantially delayed at 31 degrees C. The recessive mutation was mapped to chromosome V, and map-based cloning identified it as a single G-->A transition (resulting in a Gly(429)-->Arg substitution) in KORRIGAN, which encodes a putative membrane-bound endo-1,4-beta-glucanase. These results demonstrate that the product of this gene is required for cellulose synthesis.
Lignin biosynthesis is an essential physiological activity of vascular plants if they are to survive under various environmental stresses on land. The biosynthesis of lignin proceeds in the cell wall by polymerization of precursors; the initial step of lignin polymerization is the transportation of lignin monomers from the cytosol to the cell wall, which is critical for lignin formation. There has been much debate on the transported form of the lignin precursor, either as free monolignols or their glucosides. In this study, we performed biochemical analyses to characterize the membrane transport mechanism of lignin precursors using angiosperms, hybrid poplar (Populus sieboldii × Populus grandidentata) and poplar (Populus sieboldii), as well gymnosperms, Japanese cypress (Chamaecyparis obtusa) and pine (Pinus densiflora). Membrane vesicles prepared from differentiating xylem tissues showed clear ATP-dependent transport activity of coniferin, whereas less than 4% of the coniferin transport activity was seen for coniferyl alcohol. Bafilomycin A1 and proton gradient erasers markedly inhibited coniferin transport in hybrid poplar membrane vesicles; in contrast, vanadate had no effect. Cis-inhibition experiments suggested that this transport activity was specific for coniferin. Membrane fractionation of hybrid poplar microsomes demonstrated that transport activity was localized to the tonoplast- and endomembrane-rich fraction. Differentiating xylem of Japanese cypress exhibited almost identical transport properties, suggesting the involvement of a common endomembrane-associated proton/coniferin antiport mechanism in the lignifying tissues of woody plants, both angiosperms and gymnosperms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.