Influenza A viruses cause recurrent outbreaks of local or global scale with potentially severe consequences for human health and the global economy. Recently, a new strain of influenza A virus was detected that causes disease in and transmits among humans, probably owing to little or no pre-existing immunity to the new strain. On June 11, 2009, the WHO declared that the infections caused by the new strain had reached pandemic proportion. Characterized as an influenza A virus of the H1N1 subtype, the genomic segments of the new strain were most closely related to swine viruses1. Most human infections with swine-origin H1N1 influenza viruses (S-OIVs) appear to be mild; however, more than 50% of hospitalized individuals do not have underlying health issues, attesting to the pathogenic potential of S-OIVs. To better assess the risk posed by the new virus, we characterized one of the first US S-OIV isolates, A/California/04/09 (H1N1; CA04), as well as several other S-OIV isolates, in vitro and in vivo. In mice and ferrets, CA04 and other S-OIV isolates tested replicate more efficiently than a currently circulating human H1N1 virus. In addition, CA04 replicates efficiently in nonhuman primates, causes more severe pathologic lesions in the lungs of infected mice, ferrets, and nonhuman primates than a currently circulating human H1N1 virus, and transmits among ferrets. In specific-pathogen free miniature pigs, CA04 replicates without clinical symptoms. The assessment of human sera from different age groups suggests that infection with human H1N1 viruses antigenically closely related to viruses circulating in 1918 confers neutralizing antibody activity to CA04. Finally, we show that CA04 is sensitive to approved and experimental antiviral drugs, suggesting these compounds as a first line of defence against the recently declared S-OIV pandemic.
The 'Spanish' influenza pandemic of 1918-19 was the most devastating outbreak of infectious disease in recorded history. At least 20 million people died from their illness, which was characterized by an unusually severe and rapid clinical course. The complete sequencing of several genes of the 1918 influenza virus has made it possible to study the functions of the proteins encoded by these genes in viruses generated by reverse genetics, a technique that permits the generation of infectious viruses entirely from cloned complementary DNA. Thus, to identify properties of the 1918 pandemic influenza A strain that might be related to its extraordinary virulence, viruses were produced containing the viral haemagglutinin (HA) and neuraminidase (NA) genes of the 1918 strain. The HA of this strain supports the pathogenicity of a mouse-adapted virus in this animal. Here we demonstrate that the HA of the 1918 virus confers enhanced pathogenicity in mice to recent human viruses that are otherwise non-pathogenic in this host. Moreover, these highly virulent recombinant viruses expressing the 1918 viral HA could infect the entire lung and induce high levels of macrophage-derived chemokines and cytokines, which resulted in infiltration of inflammatory cells and severe haemorrhage, hallmarks of the illness produced during the original pandemic.
The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants 1,2 . The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries 3 . Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone 4 , we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants.The Omicron variant of SARS-CoV-2, the virus responsible for COVID-19, was first detected in late November 2021 and has spread rapidly around the world. Omicron variants have been classified into four different sublineages: BA.1, BA.1.1, BA.2 and BA.3. The original Omicron lineage, BA.1, rapidly became the prevailing variant circulating in many countries; however, BA.2 variants have become dominant in at least 68 countries 3 . Moreover, the prevalence of BA.2 is increasing rapidly in several other countries including South Africa, Sweden, Austria, Singapore, Georgia and Sri Lanka (https://covariants.org/per-variant). Preliminary data indicate that the BA.2 variant may be more transmissible than the BA.1 variant 5,6 .Recently, we and others have shown that BA.1 variants are less pathogenic in animal models than previously circulating variants of concern 7-9 (VOC), consistent with preliminary clinical data in humans 10 . Moreover, other studies have reported that BA.1 variants show reduced sensitivity to vaccine-or infection-induced antibodies, as well as some therapeutic monoclonal antibodies [11][12][13][14][15] . The spike (S) protein of SARS-CoV-2 mediates viral receptor binding and membrane fusion, both of which are essential for viral infection of host cells. The S protein is also the principal antigen targeted by the host neutralizing antibody response 16 . Notably, mutations in the S protein, such as E484K, N501Y, D614G and P681H/R, have ...
In this population, influenza B viruses with reduced sensitivity to neuraminidase inhibitors do not arise as frequently as resistant influenza A viruses. However, they appear to be transmitted within communities and families, requiring continued close monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.