Background: The plasmid R100 encodes tra genes essential for conjugal DNA transfer in Escherichia coli. Genetic evidence suggests that the traJ gene encodes a positive regulator for the traY-I operon, which includes almost all the tra genes located downstream of traJ. The molecular mechanism of regulation by TraJ, however, is not yet understood. traY is the most proximal gene in the traY-I operon. TraY promotes DNA transfer by binding to a site, sbyA, near the origin of transfer. TraY is suggested to have another role in regulation of the traY-I operon, since it binds to two other sites, named sbyB and sbyC, located in the region preceding traY-I.
Ascochlorin, a prenylphenol antitumor antibiotic, profoundly increases the expression of endogenous p53 by increasing protein stability in the human osteosarcoma cells and human colon cancer cells. Ascochlorin also increases DNA binding activity to the p53 consensus sequence in nuclear extract and enhances transcription of p53 downstream targets. Ascochlorin specifically induces p53 phosphorylation at ser 392 without affecting ser 15 or 20, whereas DNA damaging agents typically phosphorylate these serines. Moreover, ascochlorin does not induce phosphorylation of ATM and CHK1, an established substrate of ATR that is activated by genotoxins, nor does it increase DNA strand break, as confirmed by comet assay. The structure-activity relationship suggests that p53 activation by ascochlorin is related to inhibition of mitochondrial respiration, which is further supported by the observation that respiratory inhibitors activate p53 in a manner similar to ascochlorin. These results suggest that ascochlorin, through the inhibition of mitochondrial respiration, activates p53 through a mechanism distinct from genotoxins. ' UICCKey words: AP-1; p53; mitochondrial respiration; ascochlorin; ATM; ATR Ascochlorin and ascofuranone ( Fig. 1) are prenylphenol antifungal antibiotics isolated from an incomplete fungus, Ascochyta viciae. Although originally reported to be an antiviral antibiotic, 1-3 ascochlorin and its derivatives exhibit a large variety of physiological activities including hypolipidemic activity, 2 suppression of hypertension, 4 amelioration of types I and II diabetes, 5,6 immunomodulation 7 and antitumor activity. 8,9 Ascochlorin and ascofuranone, one of its derivatives, inhibit oxidative phosphorylation by hindering ubiquinone-dependent electron transport in isolated mitochondria, 10-12 and it has been suggested that the antiviral activity of ascochlorin and macrophage activation by ascofuranone are a result of this inhibitory activity on mitochondrial respiration. 10,11,13 These compounds also modulate the activity of nuclear hormone receptors, 14 which suggests that mechanisms other than those involving the respiratory chain contribute to their physiological activities.Ascochlorin-related compounds show profound antitumor activity against a variety of transplantable tumors and suppress the metastasis of melanomas and lung carcinomas in murine animal models. 8,9 Because pretreatment with ascofuranone before tumor implantation is as effective as treatment after tumor implantation, the antitumor activity of ascofuranone must be mediated, at least in part, by activation of a host defense mechanism against tumors. We recently found that ascochlorin and ascofuranone selectively suppress the AP-1 activity of human renal carcinoma cells, as well as its downstream targets such as matrix metalloproteinase-9, through suppression of the Erk1/2 signaling pathway, 15,16 suggesting that ascochlorin directly suppresses tumor malignancy by this mechanism. We also found that human breast cancer cell lines that are devoid of es...
Chloroplasts are plant organelles that carry out oxygenic photosynthesis. Chloroplast biogenesis depends upon chloroplast ribosomes and their translational activity. However, regulation of chloroplast ribosome biogenesis remains an important unanswered question. In this study, we found that inhibition of target of rapamycin (TOR), a general eukaryotic checkpoint kinase, results in a decline in chloroplast ribosomal RNA (rRNA) transcription in the unicellular red alga, Cyanidioschyzon merolae. Upon TOR inhibition, transcriptomics and other analyses revealed increased expression of a nuclear-encoded chloroplast RelA-SpoT homolog (RSH) gene (CmRSH4b), which encodes a homolog of the guanosine 3'-diphosphate 5'-diphosphate (ppGpp) synthetases that modulate rRNA synthesis in bacteria. Using an Escherichia coli mutant lacking ppGpp, CmRSH4b was demonstrated to have ppGpp synthetase activity. Expression analysis of a green fluorescent protein-fused protein indicated that CmRSH4b localizes to the chloroplast, and overexpression of the CmRSH4b gene resulted in a decrease of chloroplast rRNA synthesis concomitant with growth inhibition and reduction of chloroplast size. Biochemical analyses using C. merolae cell lysates or purified recombinant proteins revealed that ppGpp inhibits bacteria-type RNA polymerase-dependent chloroplast rRNA synthesis as well as a chloroplast guanylate kinase. These results suggest that CmRSH4b-dependent ppGpp synthesis in chloroplasts is an important regulator of chloroplast rRNA transcription. Nuclear and mitochondrial rRNA transcription were both reduced by TOR inhibition, suggesting that the biogeneses of the three independent ribosome systems are interconnected by TOR in plant cells.
Measuring global gene expression using cDNA or oligonucleotide microarrays is an effective approach to understanding the complex mechanisms of the effects of radiation. However, few studies have been carried out that investigate gene expression in vivo after prolonged exposure to low-dose-rate radiation. In this study, C57BL/6J mice were continuously irradiated with gamma-rays for 485 days at dose-rates of 0.032-13 microGy/min. Gene expression profiles in the kidney and testis from irradiated and unirradiated mice were analyzed, and differentially expressed genes were identified. A combination of pathway analysis and hierarchical clustering of differentially expressed genes revealed that expression of genes involved in mitochondrial oxidative phosphorylation was elevated in the kidney after irradiation at the dose-rates of 0.65 microGy/min and 13 microGy/min. Expression of cell cycle-associated genes was not profoundly modulated in the kidney, in contrast to the response to acute irradiation, suggesting a threshold in the dose-rate for modulation of the expression of cell cycle-related genes in vivo following exposure to radiation. We demonstrated that changes to the gene expression profile in the testis were largely different from those in the kidney. The Gene Ontology categories "DNA metabolism", "response to DNA damage" and "DNA replication" overlapped significantly with the clusters of genes whose expression decreased with an increase in the dose-rate to the testis. These observations provide a fundamental insight into the organ-specific responses to low-dose-rate radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.