Aim Mesophotic coral ecosystems (MCEs) are unique communities that support a high proportion of depth‐endemic species distinct from shallow‐water coral reefs. However, there is currently little consensus on the boundaries between shallow and mesophotic coral reefs and between upper versus lower MCEs because studies of these communities are often site specific. Here, we examine the ecological evidence for community breaks, defined here as species loss, in fish and benthic taxa between shallow reefs and MCEs globally. Location Global MCEs. Time period 1973–2017. Major taxa studied Macrophytes, Porifera, Scleractinia, Hydrozoa, Octocorallia, Antipatharia and teleost fishes. Methods We used random‐effects models and breakpoint analyses on presence/absence data to identify regions of higher than expected species loss along a depth gradient of 1–69 m, based on a meta‐analysis of 26 studies spanning diverse photoautotrophic and heterotrophic taxa. We then investigated the extent to which points of high faunal turnover can be explained by environmental factors, including light, temperature and nutrient availability. Results We found evidence for a community break, indicated by a significant loss of shallow‐water taxa, at ~ 60 m across several taxonomically and functionally diverse benthic groups and geographical regions. The breakpoint in benthic composition is best explained by decreasing light, which is correlated with the optical depths between 10 and 1% of surface irradiance. A concurrent shift in the availability of nutrients, both dissolved and particulate organic matter, and a shift from photoautotroph to heterotroph‐dominated assemblages also occurs at ~ 60 m depth. Main conclusions We found evidence for global community breaks across multiple benthic taxa at ~ 60 m depth, indicative of distinct community transitions between shallow and mesophotic coral ecosystems. Changes in the underwater light environment and the availability of trophic resources along the depth gradient are the most parsimonious explanations for the observed patterns.
Sponges are important ecological and functional components of coral reefs. Recently, a new hypothesis about the functional ecology of sponges in organic matter recycling pathways, the sponge‐loop hypothesis, in which dissolved and particulate organic matter is taken up by sponges and shunted to higher trophic levels as detritus, has been proposed and demonstrated for shallow (< 30 m) cryptic species. However, support for this hypothesis at mesophotic depths (∼ 30–150 m) is lacking. Here, we examined detritus production, a prerequisite of the sponge loop pathway, in a reciprocal transplant experiment, using Halisarca caerulea from water depths of 10 and 50 m. Detritus production was significantly lower in mesophotic sponges compared to shallow samples of H. caerulea. Additionally, detritus production rates in transplanted sponges moved in the direction of rates observed for resident conspecifics. The microbiome of these sponge populations was also significantly different between shallow and mesophotic depths, and the microbial communities of the transplanted sponges also shifted in the direction of their new depth in 10 d largely driven by changes in Oxyphotobacteria, Acidimicrobiia, Nitrososphaeria, Nitrospira, Deltaproteobacteria, and Dadabacteriia. This occurred in an environment where the availability of both dissolved and particulate trophic resources changed significantly across the shallow to mesophotic depth gradient where these sponge populations were found. These results suggest that changes in sponge detritus production are primarily driven by differential quality and quantity of trophic resources, as well as their utilization by the sponge host, and its microbiome, along the shallow to mesophotic depth gradient.
Agelas tubulata from shallow to mesophotic depths on Grand Cayman Island.
Sponges are a crucial component of Caribbean coral reef ecosystem structure and function. In the Caribbean, many sponges show a predictable increase in percent cover or abundance as depth increases from shallow (< 30 m) to mesophotic (30–150 m) depths. Given that sponge abundances are predicted to increase in the Caribbean as coral cover declines, understanding ecological factors that control their distribution is critical. Here we assess if sponge cover increases as depth increases into the mesophotic zone for three common Caribbean reef sponges, Xestospongia muta, Agelas tubulata, and Plakortis angulospiculatus, and use stable isotope analyses to determine whether shifts in trophic resource utilization along a shallow to mesophotic gradient occurred. Ecological surveys show that all target sponges significantly increase in percent cover as depth increases. Using bulk stable isotope analysis, we show that as depth increases there are increases in the δ13C and δ15N values, reflecting that all sponges consumed more heterotrophic picoplankton, with low C:N ratios in the mesophotic zone. However, compound‐specific isotope analysis of amino acids (CSIA‐AA) shows that there are species‐specific increases in δ13CAA and δ15NAA values. Xestospongia muta and P. angulospiculatus showed a reduced reliance on photoautotrophic resources as depth increased, while A. tubulata appears to rely on heterotrophy at all depths. The δ13CAA and δ15NAA values of these sponges also reflect species‐specific patterns of host utilization of both POM and dissolved organic matter (DOM), its subsequent re‐synthesis, and translocation, by their microbiomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.