The fine channel mist (FCM) method has been developed, as a safe and economical growth technology of zinc oxide (ZnO) thin films. This technique utilized aqueous solution of zinc acetate, which is a safe material, as a zinc source, and this solution is supplied to the growth as a form of micro-sized mist by applying ultrasonic-power with the carrier gas of nitrogen. ZnO thin films were grown in an open system, where the mist of zinc acetate reacted with oxygen or water on a glass substrate at the temperature of 270 to 500. One of the key technologies was to flow the reactant gases in a micro-channel on the substrate. This allowed effective growth of ZnO by "condensing" the flow to the substrate neighborhood and by rapidly improving collision probability of the source gases, resulting in the high efficiency (as high as 10%) for the zinc source to form ZnO. The ZnO thin film hence grown was transparent with the naked eyes, that is, the optical transmission was higher than 90% in the visible light region. Photoluminescence spectra exhibited near-band edge emission around 3.3eV (375nm) at room temperature, with weak deep level emissions. The surface morphology changed in terms of the growth conditions, reflecting different crystallographic properties. The thickness, the electrical conductivity, and the growth rate were 50−5000nm, 1−5Ωcm, and 1−200nm/min respectively. The overall properties of ZnO thin films grown here suggested the potential of this novel growth technology being utilized to fabricate transparent conducting films, ultraviolet absorbers, and so on.
We focus on IR sensors with lower reflection for the wavelength around 10 μm, strongly awaited for detecting human bodies. A concave structure was designed as a more suitable reflection-free structure for IR light, and an optical system with a femtosecond laser was employed for verification of the effectiveness of the structure. The microstructures prepared through this process were fabricated and optically measured using SEM, FT-IR, and Raman spectroscopy. The measurement revealed that good reflection-free structures were realized for IR sensors with lower reflection for the wavelength of around 10 μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.