One of the most important anthropic missions is preventing the global spread of infectious diseases. Vaccination is the only available preventive treatment for infectious diseases, but the availability of vaccines in developing countries is not adequate. We report a simple, easy-to-use, noninvasive hydrogel patch transcutaneous vaccination system. Antigen (Ag)-specific IgG production was induced by applying an Ag-immersed patch to non-pretreated mouse auricle or hairless rat back skin. Immunofluorescence histochemical analysis revealed that Langerhans cells resident in the epidermal layer captured the antigenic proteins delivered by the hydrogel patch, which promoted the penetration of antigenic proteins through the stratum corneum, and that Ag-capturing Langerhans cells migrated into draining lymph nodes. Humoral immunity elicited by our transcutaneous vaccination system demonstrated neutralizing activity in both adenoviral infection and passive-challenge tetanus toxin experiments. The use of this hydrogel patch transcutaneous vaccination system will facilitate the global distribution of effective and convenient vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.