and by the ''Angelo Nocivelli'' Foundation. Disclosure of potential conflict of interest: The authors declare that they have no relevant conflicts of interest.
Chitin, which is a major component of house dust mites (HDM), fungi, crustaceans, etc., can activate immune cells, suggesting that it contributes to development of allergic disorders such as asthma. Although the pathophysiological sensitization route of asthmatic patients to allergens is considered via the respiratory tract, the roles of intranasally-administered chitin in development of asthma remain unclear. After ovalbumin (OVA) challenge, development of airway inflammation was profoundly exacerbated in mice sensitized with OVA in the presence of chitin. The exacerbation was dependent on IL-33, but not IL-25, thymic stromal lymphopoietin or IL-17A. Chitin enhanced IL-33-dependent IL-1β production by dendritic cells (DCs). Furthermore, chitin- and IL-33-stimulated DC-derived IL-1β promoted OVA-specific Th2 cell activation, resulting in aggravation of OVA-induced airway inflammation. These findings indicate the adjuvant activity of chitin via a new mechanism and provide important clues for development of therapeutics for allergic disorders caused by HDM, fungi and crustaceans.
Since the airways are constantly exposed to various pathogens and foreign antigens, various kinds of cells in the airways-including structural cells and immune cells-interact to form a precise defense system against pathogens and antigens that involve both innate immunity and acquired immunity. Accumulating evidence suggests that innate lymphoid cells (ILCs) play critical roles in the maintenance of tissue homeostasis, defense against pathogens and the pathogenesis of inflammatory diseases, especially at body surface mucosal sites such as the airways. ILCs are activated mainly by cytokines, lipid mediators and neuropeptides that are produced by surrounding cells, and they produce large amounts of cytokines that result in inflammation. In addition, ILCs can change their phenotype in response to stimuli from surrounding cells, which enables them to respond promptly to microenvironmental changes. ILCs exhibit substantial heterogeneity, with different phenotypes and functions depending on the organ and type of inflammation, presumably because of differences in microenvironments. Thus, ILCs may be a sensitive detector of microenvironmental changes, and analysis of their phenotype and function at local sites may enable us to better understand the microenvironment in airway diseases. In this review, we aimed to identify molecules that either positively or negatively influence the function and/or plasticity of ILCs and the sources of the molecules in the airways in order to examine the pathophysiology of airway inflammatory diseases and facilitate the issues to be solved.
Discovery of innate lymphoid cells (ILCs), which are non-T and non-B lymphocytes that have no antigen-specific receptors, 1 changed the classical concept of the mechanism of allergy, which had been explained mainly as antigen-specific acquired immunity based on IgE and Th2 cells. The discovery enabled us to logically explain the findings of genome-wide association studies (GWAS) and led to dramatic improvement in our understanding of the mechanism of non-IgEmediated allergic inflammation. As a result, we are now able to better
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.