The probes for specific detection of oxidized low-density lipoprotein (ox-LDL) in plasma and in atherosclerotic plaques are expected to be useful for the identification, diagnosis, prevention, and treatment for atherosclerosis. In this study, to develop a fluorescent peptide probe for specific detection of ox-LDL, we investigated the interaction of fluorescein isothiocyanate (FITC)-labeled peptides with ox-LDL using polyacrylamide gel electrophoresis. Two heptapeptides (KWYKDGD and KP6) coupled through the ε-amino group of K at the N-terminus to FITC in the presence/absence of 6-amino-n-caproic acid (AC) linker to FITC--(FITC-AC)KP6 and (FITC)KP6--both bound with high specificity to ox-LDL in a dose-dependent manner. In contrast, a tetrapeptide (YKDG) labeled with FITC at the N-terminus and a pentapeptide (YKDGK) coupled through the ε-amino group of K at the C-terminus to FITC did not bind selectively to ox-LDL. Furthermore, (FITC)KP6 and (FITC-AC)KP6 bound with high specificity to the protein in mouse plasma (probably ox-LDL fraction). These findings strongly suggest that (FITC)KP6 and (FITC-AC)KP6 may be effective novel fluorescent probes for specific detection of ox-LDL.
Probes that can detect oxidized low-density lipoprotein (ox-LDL) in plasma and in atherosclerotic plaques can be useful for the diagnosis, prevention, and treatment of atherosclerosis. Recently, we have reported that two heptapeptides (Lys-Trp-Tyr-Lys-Asp-Gly-Asp, KP6) coupled to fluorescein isothiocyanate (FITC) through the ε-amino group of N-terminus Lys in the absence/presence of 6-amino-n-caproic acid (AC) linker to FITC-(FITC)KP6 and (FITC-AC)KP6-can be useful as fluorescent probes for the specific detection of ox-LDL. In this study, to develop the fluorescent peptides with high plasma stability for the specific detection of ox-LDL, we investigated the interaction of (FITC)KP6 and (FITC-AC)KP6 substituted with D-Lys at the N-terminus-(FITC)dKP6 and (FITC-AC)dKP6-with ox-LDL, and the in vitro stability of these peptides in mouse plasma. (FITC)dKP6 and (FITC-AC)dKP6 bound with high specificity to ox-LDL in a dose-dependent manner, and also to ox-LDL in the mouse plasma. Furthermore, (FITC)dKP6 was more stable than (FITC)KP6 in mouse plasma (102.1% versus 69.0% remained after 1 h). These findings strongly suggest that (FITC)dKP6 and (FITC-AC)dKP6 may be effective fluorescent probes with higher plasma stability than (FITC)KP6 and (FITC-AC)KP6 for the specific detection of ox-LDL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.