We previously showed that herpes simplex virus type 1 (HSV-1) immediate-early (IE) protein ICP27 can posttranscriptionally stimulate mRNA accumulation from a transfected viral late gene encoding glycoprotein C (gC) (K. D. Perkins, J. Gregonis, S. Borge, and S. A. Rice, J. Virol. 77:9872-9884, 2003). We began this study by asking whether ICP27 homologs from other herpesviruses can also mediate this activity. Although the homologs from varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) were inactive, the homolog from bovine herpesvirus 4 (BHV-4), termed HORF1/2, was a very efficient transactivator. Surprisingly, most of the mRNA produced via HORF1/2 transactivation was 225 nucleotides shorter than expected due to the removal of a previously undescribed intron from the gC transcript. We found that the gC mRNA produced in the absence of transactivation was also mostly spliced. In contrast, gC mRNA produced by ICP27 transactivation was predominantly unspliced. Based on these results, we conclude that ICP27 has two distinct effects on the transfected gC gene: it (i) stimulates mRNA accumulation and (ii) promotes the retention of an intron. Interestingly, the spliced transcript encodes a variant of gC that lacks its transmembrane domain and is secreted from transfected cells. As the gC splicing signals are conserved among several HSV-1 strains, we investigated whether the variant gC is expressed during viral infection. We report here that both the spliced transcript and its encoded protein are readily detected in Vero cells infected with three different laboratory strains of wild-type HSV-1. Moreover, the variant gC is efficiently secreted from infected cells. We have designated this alternate form of the protein as gCsec. As the extracellular domain of gC is known to bind heparan sulfate-containing proteoglycans and to inhibit the complement cascade via an interaction with complement component C3b, we speculate that gCsec could function as a secreted virulence factor.
ICP27 is an essential herpes simplex virus type 1 (HSV-1) immediate-early protein that stimulates viral mRNA expression from many viral delayed-early and late genes during infection. One HSV-1 late gene which is highly dependent on ICP27 during infection is that encoding the glycoprotein C (gC). Here we report that the gC gene is specifically transactivated by ICP27 in transfected Vero cells. Using various gC plasmid constructs, we show that ICP27's stimulatory effects are independent of the gC gene's endogenous promoter and polyadenylation site. This suggests that ICP27-responsive elements lie in the transcribed body of the gC gene. We also show that transactivation of the gC gene by ICP27 is independent of other viral proteins, as ICP27 alone can transactivate the gC gene when its transcription is mediated by the human cytomegalovirus immediate-early gene promoter. However, when gC gene expression is driven by its endogenous promoter, the stimulatory effect of ICP27 requires additional transactivators. To explore the level at which ICP27 transactivates the gC gene, we established stably transfected Vero cell lines that have integrated copies of the gC gene under control of the cytomegalovirus immediate-early gene promoter. These gC genes are not constitutively expressed but can be efficiently induced by HSV-1 infection. Using nuclear run-on transcription assays, we show that transcriptional induction of the stably transfected genes is ICP27 independent. In contrast, accumulation of gC mRNA is very highly dependent on ICP27. Together, these results demonstrate that ICP27 posttranscriptionally activates mRNA expression from a biologically relevant viral target gene.Herpesviruses encompass a large group of medically important, nuclear-replicating double-stranded DNA viruses. Herpes simplex virus type 1 (HSV-1) is the most extensively studied of the herpesviruses and serves as a prototype for characterizing their fundamental replication mechanisms. In particular, much is understood about how HSV-1 regulates the expression of its genes during productive infection (reviewed in references 52 and 72). During such infections, HSV-1 efficiently commandeers the host RNA polymerase II machinery and other host components to express its own genes at high levels, while simultaneously suppressing host gene expression. Moreover, the virus is able to coordinate the expression of its approximately 80 genes in a temporally regulated cascade, consisting of the sequential expression of three viral gene sets: the immediate-early (IE), delayed-early (DE), and late (L) genes. The five IE genes are expressed immediately upon infection. Their transcription does not require any newly synthesized viral proteins but is enhanced by a virion protein,VP16, working in concert with cellular transcription factors. The IE genes encode four gene regulatory factors: ICP4, ICP0, ICP22, and ICP27. These proteins induce the expression of the DE genes, the majority of which encode proteins that are involved in viral DNA replication. Expression of L gen...
It was previously shown that herpes simplex virus type 1 (HSV-1) is sensitive to leptomycin B (LMB), an inhibitor of nuclear export factor CRM1, and that a single methionine to threonine change at residue 50 (M50T) of viral immediate-early (IE) protein ICP27 can confer LMB resistance. In this work, we show that deletion of residues 21-63 from ICP27 can also confer LMB resistance. We further show that neither the M50T mutation nor the presence of LMB affects the nuclear shuttling activity of ICP27, suggesting that another function of ICP27 determines LMB resistance. A possible clue to this function emerged when it was discovered that LMB treatment of HSV-1-infected cells dramatically enhances the cytoplasmic accumulation of two other IE proteins, ICP0 and ICP4. This effect is completely dependent on ICP27 and is reversed in cells infected with LMB-resistant mutants. Moreover, LMB-resistant mutations in ICP27 enhance the nuclear localization of ICP0 and ICP4 even in the absence of LMB, and this effect can be discerned in transfected cells. Thus, the same amino (N)-terminal region of ICP27 that determines sensitivity to LMB also enhances ICP27's previously documented ability to promote the cytoplasmic accumulation of ICP4 and ICP0. We speculate that ICP27's effects on ICP4 and ICP0 may contribute to HSV-1 LMB sensitivity.
Abnormalities of vasomotor tone are characteristic of heart failure. This study was designed to assess the effects of chronic heart failure on endothelium-dependent relaxation in both large conduit arteries and small resistance vessels and to determine whether or not impaired nitric oxide (NO) production is involved. Segments of pulmonary artery (PA), abdominal aorta (AA), and small mesenteric artery (MA) were harvested from rats with heart failure resulting from coronary artery ligation and from sham-operated controls. Organ-bath experiments done in the presence of indomethacin to avoid the influence of vasodilatory prostanoids demonstrated that relaxation to acetylcholine (ACh) was impaired in the PA but not the AA or MA of the group with heart failure. Endothelium-independent relaxation to nitroglycerin was not significantly affected by the development of heart failure. Constriction to prostaglandin (PG) F(2alpha) was enhanced in PA but not in AA or MA segments. Preincubation with N(omega)-nitro-L-arginine (NNA) to inhibit the production of NO increased baseline force in vessels from all three beds, but the effect was greatest in the PA. Although relaxation to ACh was significantly diminished by NNA in the PA, it was not completely abolished. Furthermore, ACh-mediated relaxation in the presence of NAA was still impaired in the group with heart failure compared with the sham-operated control group. NNA had only mild effects on ACh-mediated relaxation in MA. These results demonstrate that (a) the mediators of endothelium-dependent relaxation may vary throughout the arterial circulation, (b) the contribution of NO to endothelium-dependent relaxation is substantial in PA and minimal in mesenteric resistance vessels, (c) endothelium-dependent relaxation is not uniformly impaired throughout the arterial bed by the development of heart failure, and (d) although a defect in NO production may account for enchanced vasoconstriction seen in response to PGF(2alpha), it does not account for the diminished vasodilatory response to ACh in this experimental model of heart failure.
To evaluate the role of angiotensin II (AII) on diastolic function during post-myocardial infarction (MI) ventricular remodeling, coronary ligation or sham operation was performed in male Sprague-Dawley rats. Experimental animals were maintained on either irbesartan, a selective AT1-receptor antagonist, or no treatment. Measurement of cardiac hypertrophy, diastolic function, and sarcoendoplasmic reticulum adenosine triphosphatase (ATPase; SERCA) and phospholamban (PLB) gene expression was assessed at 6 weeks after MI. Myocardial infarction caused a significant increase in myocardial mass and left ventricular (LV) filling pressure, whereas LV systolic pressure and +dP/dt were reduced. The time constant of isovolumic relaxation (tau) was markedly prolonged after MI. Post-MI hypertrophy was associated with substantial increases in the messenger RNA (mRNA) expression of atrial natriuretic peptide (ANP), but no significant changes in SERCA or PLB levels. Although irbesartan treatment did not significantly alter post-MI LV systolic or filling pressures, it nevertheless effectively decreased ventricular hypertrophy, improved tau, and normalized ANP expression. These results demonstrate that AT1-receptor antagonism has important effects on myocardial hypertrophy and ANP gene expression, which are independent of ventricular loading conditions. In addition, the improvement in diastolic function was not related to changes in SERCA and PLB gene expression, suggesting that enhanced myocardial relaxation was related to the blockade of AII effects on myocyte function or through a reduction of ventricular hypertrophy itself or both.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.