1. The activity of liver alcohol dehydrogenase with propan-2-ol and butan-2-ol has been confirmed. The activity with the corresponding ketones is small. Initial-rate parameters are reported for the oxidation of these secondary alcohols, and of propan-1-ol and 2-methylpropan-1-ol, and for the reduction of propionaldehyde and 2-methylpropionaldehyde. Substrate inhibition with primary alcohols is also described. 2. The requirements of the Theorell-Chance mechanism are satisfied by the data for all the primary alcohols and aldehydes, but not by the data for the secondary alcohols. A mechanism that provides for dissociation of either coenzyme or substrate from the reactive ternary complex is described, and shown to account for the initial-rate data for both primary and secondary alcohols, and for isotope-exchange results for the former. With primary alcohols, the rapid rate of reaction of the ternary complex, and its small steady-state concentration, result in conformity of initial-rate data to the requirements of the Theorell-Chance mechanisms. With secondary alcohols, the ternary complex reacts more slowly, its steady-state concentration is greater, and therefore dissociation of coenzyme from it is rate-limiting with non-saturating coenzyme concentrations. 3. Substrate inhibition with large concentrations of primary alcohols is attributed to the formation of an abortive complex of enzyme, NADH and alcohol from which NADH dissociates more slowly than from the enzyme-NADH complex. The initial-rate equation is derived for the complete mechanism, which includes a binary enzyme-alcohol complex and alternative pathways for formation of the reactive ternary complex. This mechanism would also provide, under suitable conditions, for substrate activation or substrate inhibition in a two-substrate reaction, according to the relative rates of reaction through the two pathways.
1. Kinetic studies of glutamate dehydrogenase were made with wide concentration ranges of the coenzymes NAD(+) and NADP(+) and the substrates glutamate and norvaline. Initial-rate parameters were evaluated. 2. Deviations from Michaelis-Menten behaviour towards higher activity were observed with increasing concentrations of either coenzyme with glutamate as substrate, but not with norvaline as substrate. 3. In phosphate buffer, pH7.0, Lineweaver-Burk plots with either coenzyme as variable and a constant, large glutamate concentration showed three or four linear regions of different slope with relatively sharp discontinuities. Maximum rates obtained by extrapolation and Michaelis constants for the coenzymes increased in steps with increase of coenzyme concentration. 4. In the absence of evidence of heterogeneity of the enzyme and coenzyme preparations, the results are interpreted in terms of negative homotropic interactions between the enzyme subunits. It is suggested that sharp discontinuities in Lineweaver-Burk plots or reciprocal binding plots may be characteristic of this new type of interaction, which can be explained in terms of an Adair-Koshland model, but not by the model of Monod, Wyman & Changeux.
The analysis and interpretation of initial-rate data for reactions involving three substrates, obtained in suitably designed experiments, are discussed. Possible mechanisms for such reactions are classified, the rate equations are compared and the extent to which they can be distinguished experimentally is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.