Although TLR7 and TLR8 are phylogenetically and structurally related, their relative functions are largely unknown. The role of TLR7 has been established using TLR7-deficient mice and small molecule TLR7 agonists. The absence of TLR8-selective agonists has hampered our understanding of the role of TLR8. In this study TLR agonists selective for TLR7 or TLR8 were used to determine the repertoire of human innate immune cells that are activated through these TLRs. We found that TLR7 agonists directly activated purified plasmacytoid dendritic cells and, to a lesser extent, monocytes. Conversely, TLR8 agonists directly activated purified myeloid dendritic cells, monocytes, and monocyte-derived dendritic cells (GM-CSF/IL-4/TGF-β). Accordingly, TLR7-selective agonists were more effective than TLR8-selective agonists at inducing IFN-α- and IFN-regulated chemokines such as IFN-inducible protein and IFN-inducible T cell α chemoattractant from human PBMC. In contrast, TLR8 agonists were more effective than TLR7 agonists at inducing proinflammatory cytokines and chemokines, such as TNF-α, IL-12, and MIP-1α. Thus, this study demonstrated that TLR7 and TLR8 agonists differ in their target cell selectivity and cytokine induction profile.
NK cells limit the emergence of cancers and viral infections by surveillance of 'missing-self' and 'induced-self' ligands, and by direct recognition of pathogen-associated molecules. We examined individual roles for Toll-like receptors (TLRs)-7 and -8 in human NK-cell activation using synthetic, small molecule agonists of either TLR-7 (imiquimod and 3M-001), TLR-8 (3M-002) or both TLR-7/8 (3M-003 and R-848) for comparison with known ligands of TLR-2 to -9. Tracking cytokine production in PBMC initially revealed that a subset of TLR agonists including polyinosinic-polycytidylic acid (poly I:C), 3M-002, 3M-003, R-848 and single-stranded RNA trigger relatively high levels of IFN-gamma expression by NK cells. Isolated NK cells did not express TLR-7 or TLR-8. Unlike MALP-2 and poly I:C, 3M-001-3 did not induce expression of either CD69 or IFN-gamma by purified NK cells suggesting indirect activation. IL-18 and IL-12p70 were primarily required for induction of IFN-gamma by both synthetic and natural TLR-8 ligands, while type I IFN was required for induction of CD69 on NK cells by the TLR-7 agonist 3M-001. In addition to expression of IFN-gamma and CD69, relative induction of NK-cell cytotoxicity by TLR-7 and TLR-8 agonists was compared. Immune response modifiers (IRMs) with a TLR-8 agonist component (3M-002 and 3M-003) stimulated greater levels of K562 cytolysis than achieved with 3M-001 or IL-2 (1000 units ml(-1)). In vivo NK-cell cytotoxicity was also enhanced by R-848, but not in type I IFNR-deficient mice. We conclude that IRMs can modulate NK-cell function both in vitro and in vivo and that distinct indirect pathways control human NK-cell activation by TLR-7 and TLR-8 agonists.
The immunomodulatory properties of yeast β-1,3/1,6 glucans are mediated through their ability to be recognized by human innate immune cells. While several studies have investigated binding of opsonized and unopsonized particulate β-glucans to human immune cells mainly via complement receptor 3 (CR3) or Dectin-1, few have focused on understanding the binding characteristics of soluble β-glucans. Using a well-characterized, pharmaceutical-grade, soluble yeast β-glucan, this study evaluated and characterized the binding of soluble β-glucan to human neutrophils and monocytes. The results demonstrated that soluble β-glucan bound to both human neutrophils and monocytes in a concentration-dependent and receptor-specific manner. Antibodies blocking the CD11b and CD18 chains of CR3 significantly inhibited binding to both cell types, establishing CR3 as the key receptor recognizing the soluble β-glucan in these cells. Binding of soluble β-glucan to human neutrophils and monocytes required serum and was also dependent on incubation time and temperature, strongly suggesting that binding was complement-mediated. Indeed, binding was reduced in heat-inactivated serum, or in serum treated with methylamine or in serum reacted with the C3-specific inhibitor compstatin. Opsonization of soluble β-glucan was demonstrated by detection of iC3b, the complement opsonin on β-glucan-bound cells, as well as by the direct binding of iC3b to β-glucan in the absence of cells. Binding of β-glucan to cells was partially inhibited by blockade of the alternative pathway of complement, suggesting that the C3 activation amplification step mediated by this pathway also contributed to binding.
Imprime PGG (Imprime), an intravenously-administered, soluble β-glucan, has shown compelling efficacy in multiple phase 2 clinical trials with tumor targeting or anti-angiogenic antibodies. Mechanistically, Imprime acts as pathogen-associated molecular pattern (PAMP) directly activating innate immune effector cells, triggering a coordinated anti-cancer immune response. Herein, using whole blood from healthy human subjects, we show that Imprime-induced anti-cancer functionality is dependent on immune complex formation with naturally-occurring, anti-β glucan antibodies (ABA). The formation of Imprime-ABA complexes activates complement, primarily via the classical complement pathway, and is opsonized by iC3b. Immune complex binding depends upon Complement Receptor 3 and Fcg Receptor IIa, eliciting phenotypic activation of, and enhanced chemokine production by, neutrophils and monocytes, enabling these effector cells to kill antibody-opsonized tumor cells via the generation of reactive oxygen species and antibody-dependent cellular phagocytosis. Importantly, these innate immune cell changes were not evident in subjects with low ABA levels but could be rescued with exogenous ABA supplementation. Together, these data indicate that pre-existing ABA are essential for Imprime-mediated anti-cancer immune activation and suggest that pre-treatment ABA levels may provide a plausible patient selection biomarker to delineate patients most likely to benefit from Imprime-based therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.