Narcolepsy is a disabling sleep disorder affecting humans and animals. It is characterized by daytime sleepiness, cataplexy, and striking transitions from wakefulness into rapid eye movement (REM) sleep. In this study, we used positional cloning to identify an autosomal recessive mutation responsible for this sleep disorder in a well-established canine model. We have determined that canine narcolepsy is caused by disruption of the hypocretin (orexin) receptor 2 gene (Hcrtr2). This result identifies hypocretins as major sleep-modulating neurotransmitters and opens novel potential therapeutic approaches for narcoleptic patients.
Although TLR7 and TLR8 are phylogenetically and structurally related, their relative functions are largely unknown. The role of TLR7 has been established using TLR7-deficient mice and small molecule TLR7 agonists. The absence of TLR8-selective agonists has hampered our understanding of the role of TLR8. In this study TLR agonists selective for TLR7 or TLR8 were used to determine the repertoire of human innate immune cells that are activated through these TLRs. We found that TLR7 agonists directly activated purified plasmacytoid dendritic cells and, to a lesser extent, monocytes. Conversely, TLR8 agonists directly activated purified myeloid dendritic cells, monocytes, and monocyte-derived dendritic cells (GM-CSF/IL-4/TGF-β). Accordingly, TLR7-selective agonists were more effective than TLR8-selective agonists at inducing IFN-α- and IFN-regulated chemokines such as IFN-inducible protein and IFN-inducible T cell α chemoattractant from human PBMC. In contrast, TLR8 agonists were more effective than TLR7 agonists at inducing proinflammatory cytokines and chemokines, such as TNF-α, IL-12, and MIP-1α. Thus, this study demonstrated that TLR7 and TLR8 agonists differ in their target cell selectivity and cytokine induction profile.
Human narcolepsy-cataplexy, a sleep disorder associated with a centrally mediated hypocretin (orexin) deficiency, is tightly associated with HLA-DQB1*0602. Few studies have investigated the influence that additional HLA class II alleles have on susceptibility to this disease. In this work, 1,087 control subjects and 420 narcoleptic subjects with cataplexy, from three ethnic groups, were HLA typed, and the effects of HLA-DRB1, -DQA1, and -DQB1 were analyzed. As reported elsewhere, almost all narcoleptic subjects were positive for both HLA-DQA1*0102 and -DQB1*0602. A strong predisposing effect was observed in DQB1*0602 homozygotes, across all ethnic groups. Relative risks for narcolepsy were next calculated for heterozygous DQB1*0602/other HLA class II allelic combinations. Nine HLA class II alleles carried in trans with DQB1*0602 were found to influence disease predisposition. Significantly higher relative risks were observed for heterozygote combinations including DQB1*0301, DQA1*06, DRB1*04, DRB1*08, DRB1*11, and DRB1*12. Three alleles-DQB1*0601, DQB1*0501, and DQA1*01 (non-DQA1*0102)-were found to be protective. The genetic contribution of HLA-DQ to narcolepsy susceptibility was also estimated by use of lambda statistics. Results indicate that complex HLA-DR and -DQ interactions contribute to the genetic predisposition to human narcolepsy but that additional susceptibility loci are also most likely involved. Together with the recent hypocretin discoveries, these findings are consistent with an immunologically mediated destruction of hypocretin-containing cells in human narcolepsy-cataplexy.
Synthetic immune response modifiers (IRM) such as imidazoquinolines can selectively activate human TLR7 or TLR8. Although these endosomal TLRs are close relatives, TLR7-deficient mice are unresponsive to TLR8 agonist IRMs. Similarly, natural ssRNA cannot activate murine TLR8, leading to the belief that murine TLR8 is nonfunctional. In this study, we transfected HEK293 cells with murine TLR8 and NF-κB reporter constructs and stimulated them with combinations of IRM and oligodeoxynucleotides (ODNs). When stimulated with TLR7 or TLR8 agonists alone, no NF-κB response was observed. However, a combination of polyT ODN plus the TLR8 agonist activated NF-κB, whereas polyT ODN plus the TLR7 agonist did not activate. Primary mouse cells responded to the IRM/polyT ODN by secreting TNF. Cells from TLR7−/− and TLR9−/− mice responded to the IRM/polyT ODN combination, whereas MyD88−/− cells did not respond. In conclusion, this study demonstrates for the first time that mouse TLR8 is functional.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.