The self-assembly of monodisperse gold and silver colloid particles into monolayers on polymer-coated substrates yields macroscopic surfaces that are highly active for surface-enhanced Raman scattering (SERS). Particles are bound to the substrate through multiple bonds between the colloidal metal and functional groups on the polymer such as cyanide (CN), amine (NH(2)), and thiol (SH). Surface evolution, which can be followed in real time by ultraviolet-visible spectroscopy and SERS, can be controlled to yield high reproducibility on both the nanometer and the centimeter scales. On conducting substrates, colloid monolayers are electrochemically addressable and behave like a collection of closely spaced microelectrodes. These favorable properties and the ease of monolayer construction suggest a widespread use for metal colloid-based substrates.
Covalent attachment of nanometer-scale colloidal Au particles to organosilane-coated substrates is a flexible and general approach to formation of macroscopic Au surfaces that have well-defined nanostructure. Variations in substrate (glass, metal, Al2O3), geometry (planar, cylindrical), functional group (−SH, −P(C6H5)2, −NH2, −CN), and particle diameter (2.5−120 nm) demonstrate that each component of these assemblies can be changed without adverse consequences. Information about particle coverage and interparticle spacing has been obtained using atomic force microscopy, field emission scanning electron microscopy, and quartz crystal microgravimetry. Bulk surface properties have been probed with UV−vis spectroscopy, cyclic voltammetry, and surface enhanced Raman scattering. Successful application of the latter two techniques indicates that these substrates may have value for Raman and electrochemical measurements. The assembly method described herein is compared with previous methods for controlling the nanoscale roughness of metal surfaces, and its potential applicability to the assembly of other colloidal materials is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.