A new model of the plasma plume from Hall Effect Thrusters (HET's) is presented. The model includes the self-expansion of the main beam by density gradient electric fields, lowenergy ions produced by resonant charge exchange between beam ions and neutral atoms (ambient and thruster-induced), and angle-dependent elastic scattering of beam ions off neutral atoms. The variation of radial velocities across the annular thruster beam is also included. The model is an advance over previous plume models in the way it numerically models the self-expansion of the main beam, and in particular, the treatment of elastic scattering using recently calculated differential cross sections. The results are compared with recent measurements of the energy and angledependent plume from the BPT4000 Hall-Effect Thruster. Both the intensity and energy dependence of the scattering peaks are compared. The principal result is that elastic scattering is the source of the majority of ions with energy greater than E/q=50V that are observed at angles greater than 45° with respect to the thrust axis. The model underscores the need for elastic scattering cross sections for multiply charged ions, as well as a better understanding of HET propellant utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.