Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.
Cotton leaf curl disease (CLCuD) is a major constraint to cotton production in Pakistan. Infectious clones of the monopartite begomovirus cotton leaf curl virus (CLCuV), associated with diseased cotton, are unable to induce typical symptoms in host plants. We have identified and isolated a single-stranded DNA molecule approximately 1350 nucleotides in length which, when coinoculated with the begomovirus to cotton, induces symptoms typical of CLCuD, including vein swelling, vein darkening, leaf curling, and enations. This molecule (termed DNA beta) requires the begomovirus for replication and encapsidation. The CLCuV/DNA 1/DNA beta complex, together with a similar complex previously identified in Ageratum conyzoides, represent members of an entirely new type of infectious, disease-causing agents. The implications of this finding to our understanding of the evolution of new disease-causing agents are discussed.
Ageratum conyzoides L., a weed species widely distributed throughout southeast Asia, frequently exhibits striking yellow vein symptoms associated with infection by Ageratum yellow vein virus (AYVV), a member of the Geminiviridae (genus Begomovirus). Most begomoviruses have bipartite genomes (DNAs A and B), but only a DNA A has been identified for AYVV. We demonstrate that yellow vein disease of A. conyzoides results from co-infection by AYVV DNA A (2,741 nt) and a circular DNA that is approximately half its size (1,347 nt) that we designate DNA beta. Apart from the sequence TAATATTAC, common to all geminiviruses and containing the initiation site of rolling circle replication, DNA beta shows negligible sequence homology either to AYVV DNA A or to DNA B associated with bipartite begomoviruses. DNA beta depends on DNA A for replication and is encapsidated by DNA A-encoded coat protein and so has characteristics of a DNA satellite. However, systemic infection of A. conyzoides by DNA A alone is sporadic and asymptomatic, and DNA A accumulation is reduced to 5% or less of its accumulation in the presence of DNA beta. Therefore, DNA A and DNA beta together form a previously unrecognized disease-inducing complex. Our data also demonstrate that the nanovirus-like DNA 1 component associated with infected A. conyzoides plays no essential role in the disease and represents a satellite-like DNA. Furthermore, the satellite DNA previously found associated with tomato leaf curl virus is probably a defective DNA beta homologue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.