Geminivirus taxonomy and nomenclature is growing in complexity with the number of genomic sequences deposited in sequence databases. Taxonomic and nomenclatural updates are published at regular intervals (Fauquet et al. in Arch Virol 145:1743-1761, 2000, Arch Virol 148:405-421, 2003). A system to standardize virus names, and corresponding guidelines, has been proposed (Fauquet et al. in Arch Virol 145:1743-1761, 2000). This system is now followed by a large number of geminivirologists in the world, making geminivirus nomenclature more transparent and useful. In 2003, due to difficulties inherent in species identification, the ICTV Geminiviridae Study Group proposed new species demarcation criteria, the most important of which being an 89% nucleotide (nt) identity threshold between full-length DNA-A component nucleotide sequences for begomovirus species. This threshold has been utilised since with general satisfaction. More recently, an article has been published to clarify the terminology used to describe virus entities below the species level [5]. The present publication is proposing demarcation criteria and guidelines to classify and name geminiviruses below the species level. Using the Clustal V algorithm (DNAStar MegAlign software), the distribution of pairwise sequence comparisons, for pairs of sequences below the species taxonomic level, identified two peaks: one at 85-94% nt identity that is proposed to correspond to "strain" comparisons and one at 92-100% identity that corresponds to "variant" comparisons. Guidelines for descriptors for each of these levels are proposed to standardize nomenclature under the species level. In this publication we review the status of geminivirus species and strain demarcation as well as providing updated isolate descriptors for a total of 672 begomovirus isolates. As a consequence, we have revised the status of some virus isolates to classify them as "strains", whereas several others previously classified as "strains" have been upgraded to "species". In all other respects, the classification system has remained robust, and we therefore propose to continue using it. An updated list of all geminivirus isolates and a phylogenetic tree with one representative isolate per species are provided.
Viruses of the genus Begomovirus (family Geminiviridae) are emergent pathogens of crops throughout the tropical and subtropical regions of the world. By virtue of having a small DNA genome that is easily cloned, and due to the recent innovations in cloning and low-cost sequencing, there has been a dramatic increase in the number of available begomovirus genome sequences. Even so, most of the available sequences have been obtained from cultivated plants and are likely a small and phylogenetically unrepresentative sample of begomovirus diversity, a factor constraining taxonomic decisions such as the establishment of operationally useful species demarcation criteria. In addition, problems in assigning new viruses to established species have highlighted shortcomings in the previously recommended mechanism of species demarcation. Based on the analysis of 3,123 full-length begomovirus genome (or DNA-A component) sequences available in public databases as of December 2012, a set of revised guidelines for the classification and nomenclature of begomoviruses are proposed. The guidelines primarily consider a) genus-level biological characteristics and b) results obtained using a standardized classification tool, Sequence Demarcation Tool, which performs pairwise sequence alignments and identity calculations. These guidelines are consistent with the recently published recommendations for the genera Mastrevirus and Curtovirus of the family Geminiviridae. Genome-wide pairwise identities of 91 % and 94 % are proposed as the demarcation threshold for begomoviruses belonging to different species and strains, respectively. Procedures and guidelines are outlined for resolving conflicts that may arise when assigning species and strains to categories wherever the pairwise identity falls on or very near the demarcation threshold value.
The geminiviruses are a family of small, non-enveloped viruses with single-stranded, circular DNA genomes of 2500–5200 bases. Geminiviruses are transmitted by various types of insect (whiteflies, leafhoppers, treehoppers and aphids). Members of the genus Begomovirus are transmitted by whiteflies, those in the genera Becurtovirus, Curtovirus, Grablovirus, Mastrevirus and Turncurtovirus are transmitted by specific leafhoppers, the single member of the genus Topocuvirus is transmitted by a treehopper and one member of the genus Capulavirus is transmitted by an aphid. Geminiviruses are plant pathogens causing economically important diseases in most tropical and subtropical regions of the world. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Geminiviridae which is available at www.ictv.global/report/geminiviridae.
SummaryEighteen populations of Bemisia tabaci, collected from different geographic locations (North & Central America, the Caribbean, Africa, the Middle East, Asia and Europe), were studied to identify and compare biological and genetic characteristics that can be used to differentiate biotypes. The morphology of the fourth instar/pupal stage and compound eye structures of adults were investigated using scanning electron microscopy and found to be typical of the species among all biotypes and populations studied. Setae and spines of B. tabaci larval scales from the same colony were highly variable depending on the host plant species or leaf surface characteristics. The location and the morphology of caudal setae, characteristic of all B. tabaci studied to date, were present in all colonies. However, differences in adult body lengths and in the ability to induce phy to toxic disorders in certain plant species were found between biotypes or populations. The recently identified “B” biotype, characterised by a diagnostic esterase banding pattern and by its ability to induce phytotoxic responses in squash, honeysuckle and nightshade was readily distinguished from non‐“B” biotype populations. None of the non‐“B” biotypes studied, were found to induce phytotoxic responses. Nine populations examined showed typical “B” biotype characteristics, regardless of country of origin. All tested populations, determined as “B” or “B”‐like biotypes successfully mated with other “B” biotype colonies from different geographic areas. Non‐“B” biotype colonies did not interbreed with other biotypes.The B. tabaci populations were tested for their ability to transmit 15 whitefly‐transmitted geminiviruses (WTGs) from different geographic areas with a wide range of symptom types. All WTGs were transmitted by the “B” biotype colonies and by most non‐“B” biotype colonies, with the exception of three viruses found in ornamental plants which were non‐transmissible by any colony. Some non‐“B” biotypes would not transmit certain geminiviruses and some geminiviruses were more efficiently transmitted than were others.
Cotton leaf curl disease (CLCuD) is a major constraint to cotton production in Pakistan. Infectious clones of the monopartite begomovirus cotton leaf curl virus (CLCuV), associated with diseased cotton, are unable to induce typical symptoms in host plants. We have identified and isolated a single-stranded DNA molecule approximately 1350 nucleotides in length which, when coinoculated with the begomovirus to cotton, induces symptoms typical of CLCuD, including vein swelling, vein darkening, leaf curling, and enations. This molecule (termed DNA beta) requires the begomovirus for replication and encapsidation. The CLCuV/DNA 1/DNA beta complex, together with a similar complex previously identified in Ageratum conyzoides, represent members of an entirely new type of infectious, disease-causing agents. The implications of this finding to our understanding of the evolution of new disease-causing agents are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.