A reaction center is the part of a chemical reaction that undergoes changes, the heart of the chemical reaction. The reaction atom–atom mapping indicates which reactant atom becomes which product atom during the reaction. Automatic reaction mapping and reaction center detection are of great importance in many applications, such as developing chemical and biochemical reaction databases and studying reaction mechanisms. Traditional reaction mapping algorithms are either based on extended‐connectivity or maximum common substructure (MCS) algorithms. With the development of several biochemical reaction databases (such as KEGG database) and increasing interest in studying metabolic pathways in recent years, several novel reaction mapping algorithms have been developed to serve the new needs. Most of the new algorithms are optimization based, designed to find optimal mappings with the minimum number of broken and formed bonds. Some algorithms also incorporate the chemical knowledge into the searching process in the form of bond weights. Some new algorithms showed better accuracy and performance than the MCS‐based method. WIREs Comput Mol Sci 2013, 3:560–593. doi: 10.1002/wcms.1140
This article is categorized under:
Computer and Information Science > Chemoinformatics
The wide application of next-generation sequencing has presented a new hurdle to bioinformatics for managing the fast-growing sequence data. The management of biomacromolecules at the chemistry level imposes an even greater challenge in cheminformatics because of the lack of a good chemical representation of biopolymers. Here we introduce the self-contained sequence representation (SCSR). SCSR combines the best features of bioinformatics and cheminformatics notations. SCSR is the first general, extensible, and comprehensive representation of biopolymers in a compressed format that retains chemistry detail. The SCSR-based high-performance exact structure and substructure searching methods (NEMA key and SSS) offer new ways to search biopolymers that complement bioinformatics approaches. The widely used chemical structure file format (molfile) has been enhanced to support SCSR. SCSR offers a solid framework for future development of new methods and systems for managing and handling sequences at the chemistry level. SCSR lays the foundation for the integration of bioinformatics and cheminformatics.
[thiazolium-2,2 0 -14 C 2 ]-SAR97276A, a bis(thiazolium) antimalarial development candidate, was synthesized from [ 14 C]-thiourea with an overall radiochemical yield of 15%. The synthetic route involves a modified procedure for the synthesis of [ 14 C]-sulfurol, also a key intermediate in thiamine synthesis, which was developed due to unlabelled chemistry proving irreproducible with the radiolabelled substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.