Of particular interest to the neuroscience and robotics communities is the understanding of how two humans could physically collaborate to perform motor tasks such as holding a tool or moving it across locations. When two humans physically interact with each other, sensory consequences and motor outcomes are not entirely predictable as they also depend on the other agent’s actions. The sensory mechanisms involved in physical interactions are not well understood. The present study was designed (1) to quantify human–human physical interactions where one agent (“follower”) has to infer the intended or imagined—but not executed—direction of motion of another agent (“leader”) and (2) to reveal the underlying strategies used by the dyad. This study also aimed at verifying the extent to which visual feedback (VF) is necessary for communicating intended movement direction. We found that the control of leader on the relationship between force and motion was a critical factor in conveying his/her intended movement direction to the follower regardless of VF of the grasped handle or the arms. Interestingly, the dyad’s ability to communicate and infer movement direction with significant accuracy improved (>83%) after a relatively short amount of practice. These results indicate that the relationship between force and motion (interpreting as arm impedance modulation) may represent an important means for communicating intended movement direction between biological agents, as indicated by the modulation of this relationship to intended direction. Ongoing work is investigating the application of the present findings to optimize communication of high-level movement goals during physical interactions between biological and non-biological agents.
The time course of grip force from object contact to onset of manipulation has been extensively studied to gain insight into the underlying control mechanisms. Of particular interest to the motor neuroscience and clinical communities is the phenomenon of bell-shaped grip force rate (GFR) that has been interpreted as indicative of feedforward force control. However, this feature has not been assessed quantitatively. Furthermore, the time course of grip force may contain additional features that could provide insight into sensorimotor control processes. In this study, we addressed these questions by validating and applying two computational approaches to extract features from GFR in humans: 1) fitting a Gaussian function to GFR and quantifying the goodness of the fit [root-mean-square error, (RMSE)]; and 2) continuous wavelet transform (CWT), where we assessed the correlation of the GFR signal with a Mexican Hat function. Experiment 1 consisted of a classic pseudorandomized presentation of object mass (light or heavy), where grip forces developed to lift a mass heavier than expected are known to exhibit corrective responses. For Experiment 2, we applied our two techniques to analyze grip force exerted for manipulating an inverted T-shaped object whose center of mass was changed across blocks of consecutive trials. For both experiments, subjects were asked to grasp the object at either predetermined or self-selected grasp locations ("constrained" and "unconstrained" task, respectively). Experiment 1 successfully validated the use of RMSE and CWT as they correctly distinguished trials with versus without force corrective responses. RMSE and CWT also revealed that grip force is characterized by more feedback-driven corrections when grasping at self-selected contact points. Future work will examine the application of our analytical approaches to a broader range of tasks, e.g., assessment of recovery of sensorimotor function following clinical intervention, interlimb differences in force control, and force coordination in human-machine interactions.
Human physical interactions can be intrapersonal, e.g., manipulating an object bimanually, or interpersonal, e.g., transporting an object with another person. In both cases, one or two agents are required to coordinate their limbs to attain the task goal. We investigated the physical coordination of two hands during an object-balancing task performed either bimanually by one agent or jointly by two agents. The task consisted of a series of static (holding) and dynamic (moving) phases, initiated by auditory cues. We found that task performance of dyads was not affected by different pairings of dominant and non-dominant hands. However, the spatial configuration of the two agents (side-by-side vs. face-to-face) appears to play an important role, such that dyads performed better side-by-side than face-to-face. Furthermore, we demonstrated that only individuals with worse solo performance can benefit from interpersonal coordination through physical couplings, whereas the better individuals do not. The present work extends ongoing investigations on human-human physical interactions by providing new insights about factors that influence dyadic performance. Our findings could potentially impact several areas, including robotic-assisted therapies, sensorimotor learning and human performance augmentation.
Are leaders made or born? Leader-follower roles have been well characterized in social science, but they remain somewhat obscure in sensory-motor coordination. Furthermore, it is unknown how and why leader-follower relationships are acquired, including innate versus acquired controversies. We developed a novel asymmetrical coordination task in which two participants (dyad) need to collaborate in transporting a simulated beam while maintaining its horizontal attitude. This experimental paradigm was implemented by twin robotic manipulanda, simulated beam dynamics, haptic interactions, and a projection screen. Clear leader-follower relationships were learned despite participants not being informed that they were interacting with each other, but only when strong haptic feedback was introduced. For the first time, we demonstrate the emergence of consistent leader-follower relationships in sensory-motor coordination, and further show that haptic interaction is essential for dyadic co-adaptation. These results provide insights into neural mechanisms responsible for the formation of leader-follower relationships in our society.
Are leaders made or born? Leader–follower roles have been well characterized in social science, but they remain somewhat obscure in sensory-motor coordination. Furthermore, it is unknown how and why leader–follower relationships are acquired, including innate versus acquired controversies. We developed a novel asymmetrical coordination task in which two participants (dyad) need to collaborate in transporting a simulated beam while maintaining its horizontal attitude. This experimental paradigm was implemented by twin robotic manipulanda, simulated beam dynamics, haptic interactions, and a projection screen. Clear leader–follower relationships were learned only when strong haptic feedback was introduced. This phenomenon occurred despite participants not being informed that they were interacting with each other and the large number of equally-valid alternative dyadic coordination strategies. We demonstrate the emergence of consistent leader–follower relationships in sensory-motor coordination, and further show that haptic interaction is essential for dyadic co-adaptation. These results provide insights into neural mechanisms responsible for the formation of leader–follower relationships in our society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.