Biomimetic sensor technology is always superior to existing human technologies. The scorpion, especially the forest scorpion, has a unique ability to detect subtle vibrations, which is attributed to the microcrack-shaped slit sensillum on its legs. Here, the biological sensing mechanism of the typical scorpion (Heterometrus petersii) was intensively studied in order to newly design and significantly improve the flexible strain sensors. Benefiting from the easy-crack property of polystyrene (PS) and using the solvent-induced swelling as well as double template transferring method, regular and controllable microcrack arrays were successfully fabricated on top of polydimethylsiloxane (PDMS). Using this method, any physical damage to PDMS could be effectively avoided. More fortunately, this bio-inspired crack arrays fabricated in this work also had a radial-like pattern similar to the slit sensillum of the scorpion, which was another unexpected imitation. The gauge factor (GF) of the sensor was conservatively evaluated at 5888.89 upon 2% strain and the response time was 297 ms. Afterward, it was demonstrated that the bio-inspired regular microcrack arrays could also significantly enhance the performance of traditional strain sensors, especially in terms of the sensitivity and response time. The practical applications, such as the detection of human motions and surface folding, were also tested in this work, with the results showing significant potential applications in numerous fields. This work changes the traditional waste cracks on some damaged products into valuable things for ultrasensitive mechanical sensors. Moreover, with this manufacturing technique, we could easily realize the simple, low cost and large-scale fabrication of advanced bioinpired sensors.
Functional electronics has promising applications, including highly advanced human-interactive devices and healthcare monitoring. Here, we present a unique printable micron-scale cracked strain sensor (PMSCSS), which is bioinspired by a spider's crack-shaped lyriform slit organ. The PMSCSS is fabricated by a facile process that utilizes screen-printing to coat carbon black (CB) ink onto a paper substrate. With a certain bending radius, a cracked morphology emerged on the solidified ink layer. The working principle of the PMSCSS is prominently attributed to the strain-dependent variation in resistance due to the reconnection-disconnection of the crack fracture surfaces. The device shows appealing performances, with superfast response times (∼0.625 ms) and high sensitivity (gauge factor = 647). The response time surpasses most recent reports, and the sensitivity is comparable. We demonstrate the application of the PMSCSSs as encoders, which have good linearity and negligible hysteresis. Also, the sensor can be manipulated as a vibration detector by monitoring human-motion disturbances. According to the sensory information, some details of movements can be deduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.