Mitochondria are the powerhouses of eukaryotic cells and the main source of reactive oxygen species (ROS) in hypoxic cells, participating in regulating redox homeostasis. The mechanism of tumor hypoxia tolerance, especially the role of mitochondria in tumor hypoxia resistance remains largely unknown. This study aimed to explore the role of mitochondria in tumor hypoxia resistance. We observed that glycolysis in hypoxic cancer cells was up-regulated more rapidly, with far lesser attenuation in aerobic oxidation, thus contributing to a more stable ATP/ADP ratio. In hypoxia, cancer cells rapidly convert hypoxia-induced O2·− into H2O2. H2O2 is further decomposed by a relatively stronger antioxidant system, causing ROS levels to increase lesser compared to normal cells. The moderate ROS leads to an appropriate degree of autophagy, eliminating the damaged mitochondria and offering nutrients to promote mitochondria fusion, thus protects mitochondria and improves hypoxia tolerance in cancer. The functional mitochondria could enable tumor cells to flexibly switch between glycolysis and oxidative phosphorylation to meet the different physiological requirements during the hypoxia/re-oxygenation cycling of tumor growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.